Genetic diversity study of Ethiopian hot pepper cultivars (Capsicum spp.) using Inter Simple Sequence Repeat (ISSR) marker

Document Type: Research Paper

Authors

Applied Biology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia

Abstract

Hot pepper (Capsicum spp.) is an economically important spice widely cultivated and consumed in Ethiopia. In spite of its wide importance, there is no information available on the molecular genetic diversity of this crop. Cultivars characterization is an important link between the conservation and utilization of plant genetic resources in various breeding programs. Using five ISSR primers, a total of 37 scorable bands were generated of which 35 (94.6%) were polymorphic bands. The diversity of polymorphic bands within population ranged from 51.35% to 91.89 % with a mean of 66.6 %, Nei’s genetic diversity of 0.19 - 0.30 with a mean of 0.28, and Shannon information index of 0.29 - 0.45 with a mean of 0.43. With all diversity parameters, the highest diversity was obtained from amhara2 populations, whilst the lowest was from Oromia2. From Jaccard’s pairwise similarity coefficient, Oromia1 and oromia2 were the most related populations exhibiting 0.956 similarity and Semn omo and Amhara 2 were the most distantly related populations with similarity of 0.827. Clustering was showed that there is strong correlation between geographic distance and genetic diversity of Ethiopian hot peppers cultivars because geographically closely related species have been clustered together. Amhara 2 populations exhibited the highest genetic diversity so that the populations should be considered as the primary sites in designing conservation areas for this crop in Ethiopia.  Further, it is suggested that molecular markers are valid tags for the assessment of genetic diversity in Capsicum spp. cultivars.

Keywords

Main Subjects


[1]     Ajjapplavara, P.S. (2009). Genetic diversity in chili (Capsicum annuum L.). The Asian Journal of Horticulture 4 (1): 29-31.

[2]     Ballina-Gómez, H., Latournerie-Moreno, L., Ruiz-Sánchez, E., Pérez-Gutiérre,z A.,  Rosado-Lugo, G. (2013). Morphological characterization of Capsicum annuum L. accessions from southern Mexico and their response to the Bemisia tabaci-Begomovirus complex. Chilean Journal of Agricultural Research 73(4): 330-338.

[3]     Bosland, P.W. (1994). Chillies history, cultivation, and uses. In: Species, Herbs and Edible Fungi, pp: 347‒366. Elsevier Publication, NewYork, USA

[4]     Bosland P.W., Votava E.J., (2000). Peppers, Vegetables and Spices Capsicum. CABI Publishing. New York. 198p.

[5]     Bosland, P.W., (1992). Chiles: a diverse crop. Hort. Technol., 2: 6‒10

[6]     CSA (Central Statistical Authority) (2011). Federal Democratic Republic Ethiopia: Central statistics Agency. Agricultural Sample survey 2010/11. Vol I. Report on Area and Production of major crops. Statistical Bulletin. Addis Ababa. pp. 12-96.

[7]     Dansi, A., Adoukonou-Sagbadja, H., Vodouhé, R. (2010). Diversity, conservation and related wild species of Fonio millet (Digitaria spp.) in the northwest of Benin. Genet. Res. Crop Evol, 57: 827-839.

[8]     De Vicente M.C., Fulton T., (2003). Using molecular marker technology in studies on plant genetic diversity. Illus. Nelly Giraldo. IPGRI, Rome, Italy.

[9]     Dias, G.B., Gomes, V.M., Moraes, T.M.S., Zottich, U.P., Rabelo, G.R., Carvalho, A.O., Moulin, M., Gonçalves, L.S.A., Rodrigues, R., Cunha, M.Da. (2013). Characterization of Capsicum species using anatomical and molecular data. Genetics and Molecular Research 12 (4): 6488-6501.

[10]  Excoffier L., Laval G., Schneider S., (2006). Arlequin Ver3.01. An Integrated Software Package for Population Genetics Data Analysis, Computational and Molecular Population Genetics Lab (CMPG), Institute of Zoology, University of Berne, Switzerland, http://cmpg.unibe.ch/software/arlequin3

[11]  FAO (2013). FAOSTAT. Food and Agriculture Organization of the United Nations. Website http://faostat.fao.org/default.aspx.

[12]  Fekadu, M., Dandena, G. (2006). Status of Vegetable Crops in Ethiopia. Ugandan Journal of Agriculture 12 (2): 26-30.

[13]  Houimli, S.M., Denden, M., El Hadj, S.B. (2008). Induction of salt tolerance in pepper (Capsicum annuum) by 24-epibrassinolide. EurAsia J BioSci 2, 10, 83-90. www.ejobios.com/content/2/10/83-90

[14]  Huffnaga, H.P. (1961). Agriculture in Ethiopia. Food and Agriculture Organization (FAO), Rome, 24, Kaiser, W. J. and R. Hannan, 1987. Seed -treatment fungicides for control of seed borne Ascochyta lentils on lentil. Plant Disease71:58-62.

[15]  Ibiza, V.P., Blanca, J., Can izares, J., Nuez, F. (2012). Taxonomy and genetic diversity of domesticated Capsicum species in the Andean region. Genet Resour Crop Evol 59: 1077–1088.68.

[16]  Ilbi, H. (2003). RAPD markers assisted varietal identification and genetic purity test in pepper, Capsicum annuum. Scientia Hortic. 97:211-218.

[17]  Jaccard, P. (1908).  Nouvelles researches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

[18]  Knapp S (2002). Tobacco to tomatoes: A Phylogenetic perspective on fruit diversity in the Solanaceae. J. Exp. Bot.,53: 2001–2022

[19]  Kumar, L.D., Kathirvel, M., Rao, G.V., Nagaraju, J. (2001). DNA profiling of disputed chilli samples (Capsicum annum) using ISSR-PCR and FISSR-PCR marker assays. Forensic Science International, 116: 63–68.

[20]  Lijun, O., Xuexiao, Z. (2012). Inter simple sequence repeat analysis of genetic diversity of five cultivated pepper species. Afr. J. Biotechnol.11:752-757.

[21]  McLeod M.J., Eshbaugh W.H., Guttman S.I., (1979). A pre-liminary biochemical systematic study of the genus Capsicum-Solanaceae. In: Hawkes JG, Lester RN, Skelding AD, editors. The biology and taxonomy of the Solanaceae. Academic Press, New York, pp 701–714.

[22]  Nagy I, Stagel A, Sasvari Z, Roder M, Ganal M (2007). Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (Capsicum annuum L.). Genome 50: 668–688.

[23]  National Research Council (1991). Managing global genetic resources: The U.S. National Plant Germplasm System, Committee on Managing Global Genetic Resources: Agricultural Imperatives, Board on Agriculture, National Research Council. National Academy Press, Washington, DC

[24]  Nei, M. (1972). Genetic distance between populations. American Naturalist106: 283–292.

[25]  Nsabiyera, V., Ochwo-ssemakula, M., Sseruwagi, P., Ojewo, C., Gibson, P. (2013). Combining ability for field resistance to disease, fruit yield and yield factors among hot pepper (Capsicum annuum L.) Genotypes in Uganda. International Journal of Plant Breeding, 7(1): 12-21.

[26]  Nybom H (2004). Comparison of different nuclear DNA markers for estimating intra-specific genetic diversity in plants. Mol Ecol 13:1143–1155

[27]  Pavlicek, A., Hrda, S., Flegr, J. (1999). Free tree software program for construction of phylogenetic trees on the basis of distance data and bootstrap/Jack Knife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biol. 45:97–99

[28]  Piccolo, S.L., Alfonzo, A., Conigliaro, G., Moschetti, G., Burruano, S., Barone, A. (2012). A simple and rapid DNA extraction method from leaves of grapevine suitable for polymerase chain reaction analysis. African Journal of Biotechnology, 11: 10305-10309.

[29]  Prevost, A., Wilkinson, M.J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98: l07-112.

[30]  Raina, S.N., Rani, V., Kojima. et al., (2001). RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification and phylogenetic relationships in parent (Arachis hypogea) accessions and wild species. Genome, 44: 763–772.

[31]  Rohlf, F.J. (2000). NTSYS-pc, Numerical taxonomy and multivariate analysis system, Version 2.11, Exeter software, New York

[32]  Rus-Kortekaas, W., Smulders, M. J. M., Arens, P., Wosman, B. (1994). Direct comparison of levels of genetic variation in tomato detected by GACA-containing microsatellite probe and random amplified polymorphic DNA. Genome, 37: 375–381.

[33]  Shiferaw, A.A., Kassahun, T.G. (2017). Genetic diversity of Ethiopian emmer wheat (Triticum dicoccum Schrank) landraces using seed storage proteins markers. African Journal of Biotechnology 16(16):889-894.

[34]  Shirasawa, K., Ishii, K., Kim, C., Ban, T., Suzuki, M., et al. (2013). Development of Capsicum EST-SSR markers for species identification and in silico mapping onto de thomato genome sequence. Mol Breed 31: 101–110.

[35]  Srivastava, P. P., Vijayan, K., Awasthi, A.K., Saratchandra, B. (2004). Genetic analysis of Morus Alba through RAPD and ISSR markers. Indian Journal Biotechnology, 3: 527–532.

[36]  Tanksley, S.D. (1984). High rates of cross-pollination in chill pepper. Hortscience, 19: 580–582.

[37]  Thul, S.T., Darokar, M.P., Shaseny, A.K., Khanuja, S.P.S. (2011).  Molecular profiling of genetic variability in Capsicum species based on ISSR and RAPD markers. Mol. Biotechnol. 10:1007/s12033-011-9446-y.

[38]  Yang, R., Kong, J., Wu, X., Deng, Z., Chen, Q., Liu, W. (2005). Application of ISSR markers in genetic polymorphism of Capsicum frutescens L. Journal of Shanghai University (Natural Science Edition). pp. 4-20.

[39]  Yuan, C.Y., Zhang, C., Wang, P., Hu, S., Chang, H.P., Xiao, W.J., Lu, X.T., Jiang, S.B., YE, J.Z., Guo, X.H. (2014). Genetic diversity analysis of Okra (Abelmoschus esculentus L.) by inter-simple sequence repeats (ISSR) markers. Genet Mol Res. 13(2):3165-75.

[40]  Yumnam, J.S., Tyagi, W., Pandey, A., Meetei, N.T., Rai, M. (2012). Evaluation of genetic diversity of chilli landraces from North Eastern India based on morphology, SSR markers and the Pun1 locus. Plant Mol Biol Rep 30: 1470–1479.

[41]  Zhang G., et al. (2012). Genomic data from the pacific oyster (crassostrea gigas).

[42]  Zietkiewicz, E., Rafalski, A., Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176-183.