Study of genetic diversities and relatedness of Iranian citrus genotypes using morphological and molecular markers

Document Type: Research Paper

Authors

1 Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.

2 Iran Citrus Research Institute, Ramsar, Iran.

Abstract

Having knowledge about genetic relationships among accessions is necessary for developing breeding strategies to produce improved cultivars. In present study, genetic diversity and inter-relationship among 29 genotypes of citrus were comparatively analyzed using morphological and RAPD markers. Significant variability was observed among citrus genotypes for 61 quantitative and qualitative morphological characters of leaves, fruits and seeds. Furthermore, the RAPD markers revealed a high polymorphism rate (91.82 %). A pair-wise similarity value between genotypes ranged from 0.14 to 0.97 with average of 0.62. Both morphological and molecular analysis indicated a high degree of variation among studied genotypes. In current research, genotypes “pummelo” and “mandarin” were confirmed as true species of citrus in distinct cluster. Results of present study proved that both of morphological and molecular markers are potential tools for determining genetic diversities and genetic relationships of citrus genotypes and can be used in citrus breeding programs.

Keywords

Main Subjects


- References

[1]        Abkenar, A.A., Isshiki, S., Matsumoto, R., and Tashiro, Y. 2007. Comparative analysis of organelle DNAs in acid citrus grown in Japan using PCR-RFLP method. Genet Resour Crop Evol, 55(4): 487-492.

[2]        Addinsoft, S.A.R.L. 2012: Leading Data Analysis and Statistical Solution for Microsoft Excel. Addinsoft SRL.

[3]        Azizian, A., Yazdi Samadi, B., Mozafari3, J., Shahnejat Boshehri A.A., and Naghavi, M.R. 2014. Genetic diversity of diploid wheat (Triticum urartu) using morphological traits and RAPD markers. J Plant Prod Res, 21(1): 149-166.

[4]        Barkley, N.A., Roose, M.L., Krueger, R.R., and Federici, C.T. 2006. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet, 112(8): 1519-1531.

[5]        Barrett, H.C., and Rhodes, A.M. 1976. A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot, 105-136.

[6]        Cai, Q.G.C.L., Guy, C.L., and Moore, G.A. 1994. Extension of the linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation-responsive loci. Theor and Appl Genet, 89(5): 606-614.

[7]        Campos, T.E., Gutiérrez Espinosa, M.A., Warburton, M.L., Santacruz Varela, A., and Villegas Monter, Á., 2005. Characterization of madarin (Citrus spp.) using morphological and AFLP markers. Interciencia, 30(11): 687-693.

[8]        Coletta Filho, H.D., Machado, M.A., Targon, M.L.P.N., Moreira, M.C.P.Q.D.G., and Pompeu Jr, J. 1998. Analysis of the genetic diversity among mandarins (Citrus spp.) using RAPD markers. Euphytica, 102(1): 133-139.

[9]        Dehestani, A., Kazemitabar, S.K., and Rahimian, H. 2007. Assessment of genetic diversity of navel sweet orange cultivars grown in Mazandaran province using RAPD markers. Asian J Plant Sci, 6:1119–1124.

[10]      Fang, D.Q., and Roose, M.L. 1997. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor Appl Genet, 95(3): 408-417.

[11] Federici, C.T., Fang, D.Q., Scora, R.W., and Roose, M.L. 1998. Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet, 96(6-7): 812-822.

[12]      Herrero, R., Asins, M.J., Carbonell, E.A., and Navarro,L. 1996. Genetic diversity in the orange subfamily Aurantioideae. Intraspecies and intragenus genetic variability. Theor Appl Genet, 92(5): 599-609.

[13]      IPGRI (International Plant Genetic Resource Institute), 2000. Descriptors of Citrus. International Plant Genetic Resources Institute, Rome, Italy. p75.

[14]      Jaccard, P. 1908. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat, 44: 223- 270.

[15]      Jannati, M., Fotouhi, R., Pourjanabad, A., and Salehi, Z. 2009. Genetic diversity analysis of Iranian citrus varieties using micro satellite (SSR) based markers. J Hortic For, 1(7): 120-125.

[16]      Karp, A,. Kresovich, S,. Bhat, K.V., Ayad, W.G., and Hodgkin, T. 1997. Molecular tools in plant genetic resources conservation: a guide to the technology. IPGRI Bull, 2-47.

[17]      Kianoush, S., Babaeian Jelodar, N., and Asadi Abkenar, A. 2009. Evaluation of genetic diversity in citrus germplasm using microsatellite (SSR) Markers. J Agri Sci Nat Resour, 15(6): 109-117.

[18]      Koehler-Santos, P., Dornelles, A.L.C., and Freitas, L.B.D. 2003. Characterization of mandarin citrus germplasm from Southern Brazil by morphological and molecular analyses. Pesqu Agropecu Bras, 38(7): 797-806.

[19]      Luro, F., Laigret, F., Bové, J.M., and Ollitrault, P. 1995. DNA amplified fingerprinting, a useful tool for determination of genetic origin and diversity analysis in Citrus. Hortscience, 30(5): 1063-1067.

[20]      Malik, S.K., Rohini, M.R., Kumar, S., Choudhary, R., Pal, D., and Chaudhury, R. 2012. Assessment of genetic diversity in Sweet Orange [Citrus sinensis (L.) Osbeck] cultivars of India using  morphological and RAPD markers. Agric Res, 1(4): 317-324.

[21]      Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res, 27: 209-220.

[22]      Murray, M. G., and Thompson, W.F., 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 8(19): 4321-4326.

[23]      Nei, M., and Feldman, M. W. 1972. Identity of genes by descent within and between populations under mutation and migration pressures. Theor Popul Biol, 3(4): 460-465.

[24]      Nicolosi, E., Deng, Z.N., Gentile, A., La Malfa, S., Continella, G., and Tribulato, E., 2000. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theore Appl Genet, 100(8): 1155-1166.

[25]      Novelli,V.M., Cristofani, M., Souza, A.A., and Machado, M.A., 2006. Development and characterization of polymorphic microsatellite markers for the sweet orange (Citrus sinensis L. Osbeck). Geneti Mol Biol, 29(1): 90-96.

[26]      Novelli, V.M., Machado, M.A., and Lopes, C.R. 2000. Isoenzymatic polymorphism in Citrus spp. and Poncirus trifoliata (L.) Raf.(Rutaceae). Genet Mol Biol, 23(1): 163-168.

[27]      Pal, D., Malik, S.K., Kumar, S., Choudhary, R., and Sharma, K. C. 2013. Genetic variability and relationship studies of mandarin (Citrus reticulata Blanco) using morphological and molecular markers. Agric Res, 2(3): 236-245.

[28]      Peakall, R.O.D., and Smouse, P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes, 6(1): 288-295.

[29]      Rohlf, F.J. 2000. NTSYS-pc: numerical taxonomy and multivariate analysis system, ver. 2.10e. Exeter Ltd., Setauket.

[30]      Rouhi Ghorabaie, H.R.R., Ghazvini, R.F., Golein, B., and Nabipour, A.R. 2010. Identification of some citrus accessions in a citrus germplasm utilizing simple sequence repeat markers (SSRs). Hortic Environ Biotechnol, 51(4): 343-347.

[31]      Siahsar, B.A., Allahdoo, M., and Shahsavand, H. 2010. Evaluation of genetic diversity of ttiitipyrum, triticale and wheat lines through RAPD and ISJ markers. Iran J Agric Sci, 41(3): 555-568.

[32]      Swingle, W.T., and Reece, P.C. 1967. The botany of citrus and its wild relatives in the orange subfamily. In: Reuther, W., Webber, H.J., Batchelor, L.D. (Eds.), The Citrus Industry. University of California Press, Berkeley. pp:190–430.

[33]      Tripolitsiotis, C., Nikoloudakis, N., Linos, A., and Hagidimitriou, M. 2013. Molecular characterization and analysis of the greek citrus germplasm. Not Bot Horti Agrobotanici Cluj-Napoca, 41(2): 463-471.

[34]      Uzun, A., Yesiloglu, T., Tuzcu, O., and Gulsen, O. 2009. Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism  markers (SRAPs). Sci Hortic, 121(3): 306-312.

[35]      Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A., and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 18(22): 6531-6535.