The responses of L-gulonolactone oxidase and HKT2;1 genes in Aeluropus littoralis’ shoots under high concentration of sodium chloride

Document Type : Research Paper

Authors

1 Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran

2 Biotechnology Institute, Faculty of Agriculture, Shiraz University, Iran

3 Shirvan Higher Education Complex, Iran

Abstract

Salinity is one of the most important abiotic stresses that limit crop growth and production. Salt stress influences plants in two ways: by affecting ion toxicity and increasing osmotic stress. Ion homeostasis, the excretion of Na+ and using antioxidant systems are the major strategies of salt tolerance in plants. Na+ and K+ transporters with enzymes that are involved in detoxification of reactive oxygen species play key roles in salt tolerance in plants. The aim of this study was to investigate the responses of high affinity K+ transporter2;1 gene (HKT2;1) which is involved in regulation of ion homeostasis and L-gulonolactone oxidase (GLOase) which is involved in the ascorbic acid biosynthesis pathway, under different concentrations of NaCl over different time points in Aeluropus littoralis shoots. Results from Real Time PCR data showed that expressions of both genes were influenced by external and internal concentrations of Na+ and the internal K+ content. AlHKT2;1 was significantly upregulated by increasing Na+ concentration at all time points. Furthermore, its highest expression level in shoots occurred after 6 days in 300mM NaCl in shoots which was 25folds more than untreated shoots. AlGLOase expression levels increased 54 h after initiation of salt stress. These results indicate that AlHKT2;1 and AlGLOase respond to different salinity conditions and probably are part of the mechanisms involved in tolerance to high salt concentrations in A. littoralis.

Keywords

Main Subjects


[1]              Athar, H. R., Khan, A. and Ashraf, M. 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot, 63: 224-231.
[2]              Barhoumi, Z., Djebali, W., Abdelly, C., Chaïbi, W. and Smaoui, A. 2008. Ultrastructure of Aeluropus littoralis leaf salt glands under NaCl stress. Protoplasma, 233:195-202.
[3]              Barhoumi, Z., Djebali, W., Smaoui, A., Chaïbi, W. and Abdelly, C. 2007. Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J Plant Physiol, 164: 842-850.
[4]              Benito, B., Haro, R., Amtmann, A., Cuin, T. A. and Dreyer, I. 2014. The twins K+ and Na+ in plants. J Plant Physiol, 171: 723-731.
[5]              Cakmak, I. 2005. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci, 168: 521-530.
[6]              Chinnusamy, V., Jagendorf, A. and Zhu, J. K. 2005.Understanding and improving salt tolerance in plants. Crop Sci, 45: 437-448.
[7]              Enders, A. and Lehmann, J. 2012. Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun Soil Sci Plant Anal, 43: 1042-1052.
[8]              Flowers, T. J. and Yeo, A. R. 1981. Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties. New Phytol, 88:363-373.
[9]              Garciadeblás, B., Senn M. E., Bañuelos, M. A., and Rodríguez-Navarro, A. 2003. Sodium transport and HKT transporters: the rice model. Plant J, 34:788-801.
[10]          Gill, S. S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 48: 909-930.
[11]          Gregorio, G. B., Senadhira, D. and Mendoza, R. D. 1997. Screening rice for salinity tolerance. International Rice Research Institute discussion paper series (22).
[12]          Gupta, B. and Huang, B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics, 1-18.
[13]          Hemavathi, Upadhyaya, C. P., Akula, N., Young, K. E., Chun, S. C., Kim, D. H. and Park, S. W. 2010. Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett, 32:321-330.
[14]          Horie, T., Hauser, F. and Schroeder, J. I. 2009. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci, 14: 660-668.
[15]          Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S. and Shinmyo, A. 2001. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. The Plant J, 27: 129-138.
[16]          Jabnoune, M., Espeout, S., Mieulet, D., Fizames, C., Verdeil, J. L., Conéjéro, G., Rodríguez-Navarro, A., Sentenac, H., Guiderdoni, E., Abdelly, C. and Véry, A. A. 2009. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol, 150:1955-1971.
[17]          Koocheki, A.  and M. N. Mohalati. 1994. Feed value of some halophytic range plants of arid regions of Iran. In Squires, V. R. and Ayoub, A. T. (eds.). Halophytes as a resource for livestock and for rehabilitation of degraded lands. Kluwer Academic Publishers, Printed in the Netherlands, pp 249-253.
[18]          Lisko, K. A., Torres, R., Harris, R. S., Belisle, M., Vaughan, M. M., Jullian, B., Chevone, B. I., Mendes, P., Nessler, C. L. and Lorence, A. 2013. Elevating vitamin C content via overexpression of myo-inositol oxygenase and l-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cell Dev Biol Plant, 49: 643-655.
[19]          Lutts, S., Kinet, J. M. and Bouharmont, J. 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot, 46:1843-1852.
[20]          Maathuis, F. J. M. and Amtmann, A. 1999. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot, 84: 123-133.
[21]          Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 59: 651-81.
[22]         Naliwajski, M. R. and Sklodowska, M. 2014. The oxidative stress and antioxidant systems in cucumber cells during acclimation to salinity. Biol Plantarum, 58: 47-54.
[23]          Parida, A. K. and Das, A. B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf, 60: 324-349.
[24]          Qin, J., Dong, W. Y., He, K. N., Yu, Y., Tan, G. D., Han, L., Dong,  M., Zhang, Y. Y., Zhang, D., Li, A. Z. and Wang, Z. L. 2010. NaCl salinity-induced changes in water status, ion contents and photosynthetic properties of Shepherdia argentea (Pursh) Nutt. Seedlings. Plant Soil Environ, 56: 325-332.
[25]          Roy, S. J., Tucker, E. J. and Tester, M. 2011. Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol, 14: 232-239.
[26]          Schmittgen, T. D. and Livak, K. J. 2008. Analyzing real-time PCR data by the comparative CT method. Nat Protoc, 3:1101-1108.
[27]          Smirnoff, N. 2005. Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In Smirnoff, N.(eds). Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd, pp 53-86.
[28]          Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 3: 0034.1–0034.11.
[29]         Véry, A-A, Nieves-Cordones, M, Daly, M., Khan, I, Fizames, C. and Sentenac, H. 2014. Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? J plant physiol, 171: 748-769.
[30]         Wang, M, Zheng, Q, Shen, Q. and Guo, S. 2013. The critical role of potassium in plant stress response. Int J Mol Sci, 14: 7370-7390.
[31]         Witcombe, J. R, Hollington, P. A, Howarth, C. J, Reader, S. and Steele, K. A. 2008. Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc Lond B Biol Sci, 363:703-716.