Proline accumulation and osmotic stress: an overview of P5CS gene in plants

Document Type: Research Paper


1 Department of Agricultural Biotechnology, College of Agriculture Isfahan University of Technology, Isfahan, Iran

2 Department of Horticultural Sciences, College of Agriculture Isfahan University of Technology, Isfahan, Iran

3 Genetic Engineering and Molecular Genetics, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran


Under osmotic stresses, proline accumulation is an important response of plants to these conditions. Proline is a compatible osmolyte which affects many cellular and molecular aspects of plant in both normal and stressful situations. Proline is shown to be involved in plant development in normal condition and in conferring resistance to plant under biotic and abiotic stresses. Therefore, many surveys have already been designed to unveil its mechanisms and signaling pathway, so that it might be an insight into resolving growing challenge of agriculture, drought and soil salinity. Δ1-pyrroline-5-carboxylate synthetase (P5CS), one of two main enzymes in proline biosynthesis pathway from glutamate precursor, has been demonstrated to play significant role in proline accumulation in plants under water stresses. Regarding the role of P5CS under osmotic stress, there are controversial observations in various plants, hence making it still unknown, whether P5CS is rate-limiting enzyme in the pathway or not. Obviously, transgene P5CS is proved to give higher resistance to transgenic plants under drought and salinity, by elevating proline content. In this literature, proline and its identified various functions in plants, characteristics of P5CS enzyme, signals, inducers and inhibitors of P5CS gene, expression pattern of P5CS under differential conditions in studied plant species are discussed. Finally, we have reviewed generated transgenic plants overexpressing P5CS and consequences of these transformations.


Main Subjects

[1]         Abel, T. and Maniatis, T. 1989. Gene regulation. Action of leucine zippers. Nature, 341: 24-25.

[2]         Abrahám, E., Rigó, G., Székely, G., Nagy, R., Koncz, C. and Szabados, L. 2003. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol. Biol., 51:363-372.

[3]         An, Y., Zhang, M., Liu, G., Han, R. and Liang, Z. 2013. Proline Accumulation in Leaves of Periploca sepium via Both Biosynthesis Up-Regulation and Transport during Recovery from Severe Drought. PLOS ONE, 8:e69942.

[4]         Bagdi, D.L. and Shaw, B.P. 2013. Analysis of proline metabolic enzymes in Oryza sativa under NaCl stress. J Env. Biol./Aca. Env. Biol. India, 34:677-681.

[5]         Bhatnagar-Mathur, P., Vadez, V., Devi, M.J., Lavanya, M., Vani, G. and Sharma, K.K. 2009. Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol. Breeding, 23:591-606.

[6]         Chen, J.B., Yang, J.W., Zhang, Z.Y., Feng, X.F. and Wang, S.M. 2013. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. J. Genet., 92:461-469.

[7]         Chen, J., Zhang, X., Jing, R., Blair, M. W., Mao, X. and Wang, S. 2010. Cloning and genetic diversity analysis of a new P5CS gene from common bean (Phaseolus vulgaris L.). Theor. Appl. Genet., 120:1393-1404.

[8]         Colmenero-Flores, J.M., Campos, F., Garciarrubio, A. and Covarrubias, A.A. 1997. Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein. Plant Mol. Biol., 35:393-405.

[9]         Delauney, A.J., Hu, C.A., Kishor, P.B. and Verma, D.P. 1993. Cloning of ornithine-e-amino transferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coliand regulation of proline biosynthes. J. Biol. Chem., 268:18673-18678.

[10]    Fabro, G., Kovács, I., Pavet, V., Szabados, L. and Alvarez, M.E. 2004. Proline Accumulation and AtP5CS2 Gene Activation Are Induced by Plant-Pathogen Incompatible Interactions in Arabidopsis. Mol. Plant-Microbe Interact., 17:343-350.

[11]    Fujita, T., Maggio, A., Garcia-Rios, M., Bressan, R.A. and Csonka, L.N. 1998. Comparative Analysis of the Regulation of Expression and Structures of Two Evolutionarily Divergent Genes for Δ1-Pyrroline-5-Carboxylate Synthetase from Tomato. Plant Physiol., 118:661-674.

[12]    Ghanti, S.K., Sujata, K.G., Kumar, B.V., Karba, N.N., Janardhan Reddy, K., Rao, M.S. and Kishor, P.K. 2011. Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biologia Plantrum, 55:634-640.

[13]    Ginzberg, I., Stein, H., Kapulnik, Y., Szabados, L., Strizhov, N., Schell, J. and Zilberstein, A. 1998. Isolation and characterization of two different cDNAs of Δ1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol. Biol., 38:755-764.

[14]    Giraudat, J., Parcy, F., Bertauche, N., Gosti, F., Leung, J., Morris, P.C. and Vartanian, N. 1994. Current advances in abscisic acid action and signalling. Plant Mol. Biol., 26:1557-1577.

[15]    Goas, G., Goas, M. and Larher, F. 1982. Accumulation of free proline and glycine betaine in Aster tripolium subjected to a saline shock: a kinetic study related to light period. Physiol. Plant., 55:383-388.

[16]    Grover, A., Kapoor, A., Satya Lakshmi, O., Agarwal, S., Sahi, C., Katiyar-Agarwal, S. and Himanshu, D. 2001. Understanding molecular alphabets of the plant abiotic stress responses. Curr. Sci., 80:206-216.

[17]    Hallouin, M., Ghelis, T., Brault, M., Bardat, F., Cornel, D., Miginiac, E. and Jeannette, E. 2002. Plasmalemma Abscisic Acid Perception Leads to RAB18 Expression via Phospholipase D Activation in Arabidopsis Suspension Cells. Plant Physiol., 130:265-272.

[18]    Hare, P.D. and Cress, W.A. 1996. Tissue-specific accumulation of transcript encoding Δ1-pyrroline-5-carboxylate reductase in Arabidopsis thaliana. Plant Growth Regul., 19:249-256.

[19]    Hare, P.D. and Cress, W.A. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul., 21:79-102.

[20]    Hare, P.D., Cress, W.A. and Van Staden, J. 1998. Dissecting the roles of osmolyte accumulation in plants. Plant Cell Environ., 21:535-553.

[21]    Hare, P.D., Cress, W.A. and Van Staden, J. 1999. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J. Exp. Bot., 50:413-434.

[22]    Hayashi, F., Ichino, T., Osanai, M. and Wada, K. 2000. Oscillation and Regulation of Proline Content by P5CS and ProDH Gene Expressions in the Light/Dark Cycles in Arabidopsis thaliana L. Plant Cell Physiol., 41:1096-1101.

[23]    Hmida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savouré, A. and Jaoua, S. 2005. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci., 169:746-752.

[24]    Hong, Z., Lakkineni, K., Zhang, Z. and Verma, D.S. 2000. Removal of Feedback Inhibition of Δ1-Pyrroline-5-Carboxylate Synthetase Results in Increased Proline Accumulation and Protection of Plants from Osmotic Stress. Plant Physiol., 122:1129-1136.

[25]    Hu, C.A., Delauney, A.J. and Verma, D.P. 1992. A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci., 89:9354-9358.

[26]    Igarashi, Y., Yoshiba, Y., Sanada, Y., Yamaguchi-Shinozaki, K., Wada, K. and Shinozaki, K. 1997. Characterization of the gene for Δ1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol. Biol., 33:857-865.

[27]    Karthikeyan, A., Pandian, S.K. and Ramesh, M. 2011. Transgenic indica rice cv. ADT 43 expressing a Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene fromVigna aconitifoliademonstrates salt tolerance. Plant Cell Tiss Organ Cult (PCTOC), 107:383-395.

[28]    Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1999. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotech., 17:287-291.

[29]    Kishor, P.K., Hong, Z., Miao, G. H., Hu, C.-A.A. and Verma, D.S. 1995. Overexpression of delta1-Pyrroline-5-Carboxylate Synthetase lncreases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiol., 108:1387-1394.

[30]    Kishor, P.K., Sangam, S., Amrutha, R.N., Sri Laxmi, P., Naidu, K.R., Rao, K.S. and Sreenivasulu, N. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci., 88:424-438.

[31]    Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1996. A nuclear gene encoding mitochondrial proline dehydrogenase,an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell Online, 8:1323-1335.

[32]    Kumar, V., Shriram, V., Kishor, P.K., Jawali, N. and Shitole, M.G. 2010. Enhanced proline accumulation and salt stress tolerance of transgenicindica rice by over-expressing P5CSF129A gene. Plant Biotech. Rep., 4:37-48.

[33]    Lehmann, S., Funck, D., Szabados, L. and Rentsch, D. 2010. Proline metabolism and transport in plant development. Amino Acids, 39:949-962.

[34]    Liang, X., Zhang, L., Natarajan, S.K. and Becker, D.F. 2013. Proline Mechanisms of Stress Survival. Antioxidants Redox Signal., 19:998-1011.

[35]    Mani, S., Van de Cotte, B., Van Montagu, M. and Verbruggen, N. 2002. Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol., 12:73-83.

[36]    Matoh, T., Watanabe, J. and Takahashi, E. 1987. Sodium, potassium, chloride and betaine concentrations in isolated vacuoles from salt-grown Atriplex gmelini leaves. Plant Physiol., 84:173-177.

[37]    Molinari, H. C., Marur, C. J., Filho, J. B., Kobayashi, A. K., Pileggi, M., Júnior, R. L. and Vieira, L. E. 2004. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci., 167:1375-1381.

[38]    Nakashima, K., Jan, A., Todaka, D., Maruyama, K., Goto, S., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2014. Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta, 239:47-60.

[39]    Naliwajski, M. R. and Sklodowska, M. 2014. Proline and its metabolism enzymes in cucumber cell cultures during acclimation to salinity. Protoplasma, 251:201-209.

[40]    Nanjo, T., Fujita, M., Seki, M., Kato, T., Tabata, S. and Shinozaki, K. 2003. Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol., 44:541-548.

[41]    Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H. and Shinozaki, K. 1999. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. The Plant J, 18:185-193.

[42]    Peng, Z., Lu, Q. and Verma, D. S. 1996. Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol. General Genet., 253:334-341.

[43]    Porcel, R., Azcón, R. and Ruiz-Lozano, J. M. 2004. Evaluation of the role of genes encoding for Δ1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiol. Mol. Plant Pathol., 65:211-221.

[44]    Pospisilova, J., Haisel, D. and Vankova, R. 2011. Responses of Transgenic Tobacco Plants with Increased Proline Content to Drought and/or Heat Stress. Am. J. Plant Sci. 2:318-324.

[45]    Rajendrakumar, C.S., Reddy, B.V. and Reddy, A.R. 1994. Proline–protein interactions: Protection of structural and functional integrity of M4 lactate dehydrogenase. Biochem. Biophys. Res. Commun., 201:957-963.

[46]    Rastgar J. F., Yamchi A.,Hajirezaei M. and Karkhane A.A. 2011. Analysis of Growth and Germination Stage of T2 Generation of P5CS Over- expressing Tobacco Plant Nicotiana tabaccum cv. Xanthi Exposed to Osmotic Stress. African J. Biotech. 10:8539-8552.

[47]    Richards, E. J. 2006. Inherited epigenetic variation-revisiting soft inheritance. Nat. Rev. Genet., 7:395-401.

[48]    Rout, N. P. and Shaw, B. P. 1998. Salinity tolerance in aquatic macrophytes: probable role of proline, the enzymes involved in its synthesis and C4 metabolism. Plant Sci., 136:121-130.

[49]    Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F. and Coupland, G. 2000. Distinct Roles of CONSTANS Target Genes in Reproductive Development of Arabidopsis. Science, 288:1613-1616.

[50]    Saradhi, P.P., AliaArora, S. and Prasad, K.S. 1995. Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem. Biophys. Res. Commun., 209:1-5.

[51]    Savouré, A., Jaoua, S., Hua, X.-J., Ardiles, W., Montagu, M.V. and Verbruggen, N. 1995. Isolation, characterization and chromosomal location of a gene encoding the Δ1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Letters, 372:13-19.

[52]    Sawahel, W.A. and Hassan, A.H. 2002. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol. Letters, 24:721-725.

[53]    Silva-Ortega, C.O., Ochoa-Alfaro, A.E., Reyes-Agüero, J.A., Aguado-Santacruz, G.A. and Jiménez-Bremont, J.F. 2008. Salt stress increases the expression of P5CS gene and induces proline accumulation in cactus pear. Plant Physiol. Biochem., 46:82-92.

[54]    Sivakumar, P., Sharmila, P. and Pardha Saradhi, P. 2000. Proline alleviates salt-stress induced enhancement in ribulose-1,5-bisphosphate oxygenase activity. Biochem. Biophys. Res. Commun., 279:512-515.

[55]    Smith, C.J., Deutch, A.H. and Rushlow, K.E. 1984. Purification and characteristics of a gamma-glutamyl kinase involved in Escherichia coli proline biosynthesis. J. Bacteriol., 157:545-551.

[56]    Stines, A.P., Naylor, D.J., Hoj, P.B. and van Heeswijck, R. 1999. Proline Accumulation in Developing Grapevine Fruit Occurs Independently of Changes in the Levels of Δ1-Pyrroline-5-Carboxylate Synthetase mRNA or Protein. Plant Physiol., 120:923-931.

[57]    Strizhov, N., Abraham, E., Ökrész, L., Blickling, S., Zilberstein, A., Schell, J. and Szabados, L. 1997. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. The Plant J., 12:557-569.

[58]    Su, J. and Wu, R. 2004. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Science, 166:941-948.

[59]    Su, J., Shen, Q., Ho, T. D. and Wu, R. 1998. Dehydration-stress-regulated transgene expression in stably transformed rice plants. Plant Physiol., 117:913-922.

[60]    Su, M., Li, X.F., Ma, X.Y., Peng, X.J., Zhao, A.G., Cheng, L.Q. and Liu, G.S. 2011. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Sci., 181:652-659.

[61]    Surekha, C., Kumari, K.N., Aruna, L.V., Suneetha, G., Arundhati, A. and Kishor, P.K. 2014. Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell Tiss. Organ Cult. (PCTOC), 116:27-36.

[62]    Szabados, L. and Savouré, A. 2009. Proline: a multifunctional amino acid. Trends Plant Sci., 15:89-97.

[63]    Szoke, A., Miao, G.H., Hong, Z. and Verma, D.S. 1992. Subcellular location of Δ1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol, 99:1642-1649.

[64]    Thiery, L., Leprince, A.-S., Lefebvre, D., Ghars, M., Debarbieux, E. and Savouré, A. 2004. Phospholipase D Is a Negative Regulator of Proline Biosynthesis in Arabidopsis thaliana. J. Biol. Chem., 279:14812-14818.

[65]    Vaucheret, H., Béclin, C. and Fagard, M. 2001. Post-transcriptional gene silencing in plants. J. Cell Sci., 114:3083-3091.

[66]    Verbruggen, N. and Hermans, C. 2008. Proline accumulation in plants: a review. Amino Acids, 35:753-759.

[67]    Verslues, P. E. and Sharp, R. E. 1999. Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. II. Metabolic source of increased proline deposition in the elongation zone. Plant Physiol., 119:1349-1360.

[68]    Verslues, P.E., Lasky, J.R., Juenger, T.E., Liu, T.W. and Kumar, M.N. 2014. Genome-Wide Association Mapping Combined with Reverse Genetics Identifies New Effectors of Low Water Potential-Induced Proline Accumulation in Arabidopsis. Plant Physiol., 164:144-159.

[69]    Wang, Z.Q., Yuan, Y.Z., Ou, J.Q., Lin, Q.H. and Zhang, C.F. 2007. Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. J. Plant Physiol., 164:695-701.

[70]    Werner, J.E. and Finkelstein, R.R. 1995. Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiol. Plant, 93:659-666.

[71]    Xin, Z. 1998. eskimo1 mutants of Arabidopsisare constitutively freezing tolerant. PNAS, 95:7799-7804.

[72]    Yamada, m., Morishita, H., Urano, K., Shinozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K. and Yoshiba, Y. 2005. Effects of free proline accumulation in petunias under drought stress. J. Exp. Bot., 56:1975-1981.

[73]    YamchiA., Rastgar J. F., Mousavi A., Karkhanei A.A. and Renu. 2007 Proline Accumulation in Transgenic Tobacco as a Result of Expression of ArabidopsisΔ1-Pyrroline-5-carboxylate synthetase (P5CS) During Osmotic Stress. J. Plant Biochem. Biotech. 16:9-15.

[74]    Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C. and Kim, M.C. 2005. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J. Biol. Chem., 280:3697-3706.

[75]    Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguch, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1995. Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thalianaunder osmotic stress. Plant J., 7:751-760.

[76]    Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1997. Regulation of Levels of Proline as an Osmolyte in Plants under Water Stress. Plant Cell Physiol., 38:1095-1102.

[77]    Zhang, C.S., Lu, Q. and Verma, D.S. 1997. Characterization of Δ1-pyrroline-5-carboxylate synthetase gene promoter in transgenic Arabidopsis thaliana subjected to water stress. Plant Sci., 129:81-89.

[78]    Zhang, C.Y., Wang, N.N., Zhang, Y.H., Feng, Q.Z., Yang, C.W. and Liu, B. 2013. DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa). Genet. Mol. Res., 12:1269-1277.

[79]    Zhang, C.S., Lu, Q. and Verma, D.S. 1995. Removal of Feedback Inhibition of Δ1-pyrroline-5-carboxylate synthetase, a Bifunctional Enzyme Catalyzing the First Two Steps of Proline Biosynthesis in Plants. J. Biol. Chem., 270:20491-20496.

[80]    Zheng, L., Dang, Z., Li, H., Zhang, H., Wu, S. and Wang, Y. 2014. Isolation and characterization of Δ1-pyrroline-5-carboxylate synthetase (NtP5CS) from Nitraria tangutorum Bobr. and functional comparison with its Arabidopsis homologue. Mol. Biol. Rep., 41:563-572.

[81]    Zhu, B., Su, J., Chang, M., Verma, D. S., Fan, Y.-L. and Wu, R. 1998. Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci., 139:41-48.