Mapping QTLs associated with chloride accumulation in leaves of oriental tobacco (Nicotiana tabacum L.) using F2:3 population of Basma Seres 31 × SPT 406 cross

Document Type : Original research paper

Authors

1 Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran

2 Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran

Abstract

Chloride is considered as the most important micronutrient in tobacco production. But excessive amounts of chloride accumulation in leaves of tobacco have many adverse effects on the tobacco quality, such as burning capacity. Identification of quantitative trait loci (QTL) involved in chloride accumulation would be beneficial for the improvement of tobacco quality. The objective of this study was to identify genomic regions associated with chloride accumulation by using a mapping population consists of 225 F2:3 families derived from hybridization between ‘Basma Seres 31’ and ‘SPT 406’ lines. Linkage map was constructed with 23 microsatellite (SSR) and 29 inter simple sequence repeat (ISSR) polymorphic markers which covered 570.8 cM of the tobacco genome. Thirty-four of these polymorphic markers were mapped to 7 linkage groups. Distance between two adjacent markers was 17.3 cM. Composite interval mapping (CIM) was used to identify QTLs controlling chloride accumulation. One QTL for chloride accumulation was identified on linkage group 3. The percentage of phenotypic variance (R2) explained by this QTL was 12.7%. A significant association was not found between ISSR markers and chloride accumulation. The outcome of present effort can be a basis for marker aided selection (MAS) in tobacco breeding programs.

Keywords

[1]     Agacka-Mołdoch, M., Nagel, M., Doroszewska, T., Lewis, R. S. and Börner, A. 2015. Mapping quantitative trait loci determining seed longevity in tobacco (Nicotiana tabacum L.). Euphytica, 202, 479-486.
[2]     Arumuganathan, K. and Earle, E. D. 1991. Estimation of Nuclear DNA Content of Plants by Flow Cytometry. Plant Molecular Biology Reporter, 9(3), 229-233.
[3]     Basten, C. J., Weir, B. S. and Zeng, Z. B. 2003. QTL Cartographer: A Reference Manual and Tutorial for QTL Mapping. USA: Department of Statistics, North Carolina State University.
[4]     Bindler, G., Plieske, J., Bakaher, N., Gunduz, I., Ivanov, N., Van der Hoeven, R., Ganal, M., and Donini, P. 2011. A high-density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theoretical and Applied Genetics, 123, 219-230.
[5]     Bozhinova, R. 2012. Investigation of chloride concentration in burley tobacco varieties. Tutun/Tobacco, 62 (7-12), 103-108.
[6]     Brandsma, M., Wang, X., Diao, H., Kohalmi, S. E., Jevnikar, A. M., and Ma, S. 2009. A proficient approach to the production of therapeutic glucagon-like peptide-1 (GLP-1) in transgenic plants. The Open Biotechnology Journal, 3, 57-66.
[7]     Burtin, D., Chabre, H., Olagnier, D., Didierlaurent, A., Couret, M. N., Comeau, D., Wambre, E., Laparra, H., Van Overtvelt, L., Montandon, F., Batard, T., Jonval, V., Lorphelin, A., Merle, C., Berrouet, C., Parry, L., Gomord, V., Van Ree, R. and Moingeon, P. 2009. Production of native and modified recombinant Der p 1 molecules in tobacco plants. Clinical and Experimental Allergy, 39(5), 760-770.
[8]     Chai, C. C., Chai L. G., Cai C. C., Lin G. P., Wang Y. and Xu F. S. 2009. Construction of genetic linkage map of burley tobacco (Nicotiana tabacum L.) and genetic dissection of partial traits. Acta Agronomica Sinica, 35(9), 1646-1654.
[9]     Chari, M. S. 1995. Role of research in the improvement of productivity and quality of Indian flue cured Virginia tobacco. Central Tobacco Research Institute: Rajahmundry.
[10]  ChaoQiang, J., DeCheng, L., HuoYan, W., DongQi, Z., Jia, S., YiFeng, Y., ChuanJie, S. and ChaoLong, Z. 2016. Variance analysis on potassium and chloride contents of flue-cured tobacco among different varieties and producing areas in Bozhou. Journal of Agricultural Science and Technology, 18(1), 120-128.
[11]  Churchill, G.A. and Doerge, R.W. 1994. Empirical threshold values for quantitative trait mapping. Genetics, 138, 963-971.
[12]  Darvishzadeh, R. and Alavi, R. 2011. Genetic analysis of chloride concentration in oriental tobacco genotypes. Journal of Plant Nutrition, 34(7), 1070-1078.
[13]  Darvishzadeh, R., Alavi, R. and Sarafi, R. A. 2011. Genetic variability for chloride concentration in oriental tobacco genotypes. Archives of Agronomy and Soil Science, 57(2), 167-177. 
[14]  Johnson, S. C. 1999. Tobacco: Production, Chemistry and Technology. (1th ed). Oxford and Malden (Massachusetts): Blackwell Science, 
[15]  Dellaporta, S. L., Wood, J. and Hicks, J. B. 1983. A plant DNA minipreparation: version II. Plant Molecular Biology Reporter, 1(4), 19-21.
[16]  Ek, M., Eklund, R. and Venpost, R. 2005. Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas, 142, 86-91.
[17]  Fulton, T. M., Van der Hoeven, R., Eannetta, N. T. and Tanksley, S. D. 2002. Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell, 14, 1457-1467.
[18]  Garner, W. W. 1930. Role of chloride in nutrition and growth of the tobacco plant and its effect on the quality of the cured leaf. Journal of Agricultural Research, 40(7), 627-648.
[19]  Ganapathi, T. R., Suprasanna, P., Rao, P. S. and Bapat, V. A. 2004. Tobacco (Nicotiana tabacum L.) a model system for tissue culture interventions and genetic engineering. Indian Journal of Biotechnology, 3(2), 171-184.
[20]  Givry, S. D., Bouchez, M., Chabrier, P., Milan, D. and Schiex, T. 2005. CARHTA GENE: multi population integrated genetic and radiation hybrid mapping. Bioinformatics, 21(8), 1703-1704.
[21]  Guler Gumus, S. 2008. Economic analysis of oriental tobacco in Turkey. Bulgarian Journal of Agricultural Science, 14, 470-475.
[22]  Hatami Maleki, H., Karimzadeh, G., Darvishzadeh, R., Naghavi, M. R. and Sarrafi, A. 2013. Identification of QTLs associated with low chloride accumulation in oriental tobacco. Genetika, 45(3), 855-864. 
[23]  Ishizaki, H. and Akiya, T. 1978. Effects of chloride on growth and quality of Tobacco. Japan Agricultural Research Quarterly, 12(1), 1-6.
[24]  Jansen, R. C. 1996. Complex plant traits: time for polygenic analysis. Trends in Plant Science, 1: 89-94.
[25]  Julio, E., Denoyes-Rothan, B., Verrier, J. L. and Dorlhac de borne, F. 2006. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Molecular Breeding, 18(1), 69-91.  
[26]  Kenton, A., Parokonny, A. S., Gleba, Y. Y. and Bennett, M. D. 1993. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Molecular and General Genetic, 240, 159-169.
[27]  Leitch, I. J., Hanson, L., Lim, K. Y., Kovarik, A., Chase, M. W., Clarkson, J. J. and Leitch, A. R. 2008. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Annals of Botany, 101(6), 805-814. 
[28]  Lewis, R. S. 2011. In: Kole C, ed. Wild crop relatives: genomic and breeding resources, plantation and ornamental crops. Berlin: Springer-Verlag Berlin Heidelberg.
[29]  Lin, T. Y., Kao, Y. Y., Lin, S., Lin, R. F., Chen, C. M., Huang, C. H., Wang, C. K., Lin, Y. Z. and Chen, C. C. 2001. A genetic linkage map of Nicotiana plumbaginifolia / Nicotiana longiflora based on RFLP and RAPD markers. Theoretical and Applied Genetics, 103, 905-911.
[30]  Prasad, R. 2006. Textbook of Field Crops Production. New Delhi: Indian Council of Agricultural Research.
[31]  Ren, N. and Timko, M. P. 2001. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 44(4), 559-571.
[32]  Rieseberg, L. H., Archer, M. A. and Wayne, R. K. 1999. Transgressive segregation, adaptation and speciation. Heredity, 83, 363-372.
[33]  Tan, X., Xu, X., Wang, N., Zhang, X., Ren, J., Xiao, B., Xu, J., Wang, W., Wang, C., Hao, X. and Zhang, Z. 2012. QTLs related to the easy curing potential mapped in flue-cured tobacco. Plant Gene and Trait, 3(6), 28-33.
[34]  Tong Z., Jiao T. and Wang F. 2012. Mapping of quantitative trait loci conferring resistance to brown spot in flue-cured tobacco (Nicotiana tabacum L.). Plant Breeding, 131(2), 335-339.
[35]  Vontimitta V. and Lewis R. S. 2012. Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beinhart-1000. Molecular Breeding, 29(1), 89-98.
[36]  Wu F., Mueller L. A., Crouzillat D., Pétiard V. and Tanksley S. D. 2006. Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics, 174, 1407-1420.
[37]  Xiao, B. G., Xu, Z. L., Chen, X. J., Shen, A. R., Li, Y. P. and Zhu, J. 2006. Genetic linkage map constructed by using a DH population for the flue-cured tobacco. Acta Tabacaria Sinica, 12, 35-40.
[38]  Xiao, B. G., Tan, Y., Long, N., Chen, X., Tong, Z., Dong, Y. and Li, Y. 2015. SNP‑based genetic linkage map of tobacco (Nicotiana tabacum L.) using next‑generation RAD sequencing. Journal of Biological Research, 22,11.
[39]  Xu, Y. and Crouch, J. H. 2008. Marker-assisted selection in plant breeding: from publications to practice. Crop Science, 48(2), 391-407.
[40]  Yang, B. C., Xiao, B. G., Chen, X. J. and Shi, C. H. 2007. Assessing the genetic diversity of tobacco germplasm using inter simple sequence repeat and inter-retrotransposon amplification polymorphism markers. Annals Applied Biology, 150(3), 393-401.
[41]  Zeng, Z. B. 1993. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proceedings of the National Academy of Sciences, 90(23), 10972-10976.
[42]  Zeng, Z. B. 1994. Precision mapping of quantitative trait loci. Genetics, 136 (4), 1457-1468.  
[43]  Zhang, H. Y., Liu, X. Z., Li, T. S. and Yang, Y. M. 2006. Genetic diversity among flue-cured tobacco (Nicotiana tabacum L.) revealed by amplified fragment length polymorphism. Botanical Studies, 47, 223-229.
[44] Zimmerman, J. L. and Goldberg, R. B. 1977. DNA sequence organization in the genome of Nicotiana tabacum. Chromosom, 59(3), 227-252
Volume 7, Issue 2
December 2021
Pages 12-18
  • Receive Date: 06 February 2021
  • Revise Date: 15 May 2022
  • Accept Date: 25 April 2021
  • First Publish Date: 25 April 2021