Anti-oxidative Response of Bacillus thuringiensis-Primed Tomato Plants to Fusarium oxysporum f. sp. lycopersici

Document Type : Original research paper

Authors

1 Department of Plant Prodution and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Khuzestan, Iran

2 Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Khuzestan, Iran

3 Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.

Abstract

Under global warmth conditions, it is expected that tomato yield will reduce due to insect pests and fungal diseases such as fusarium wilt. Using of biological control agents is effective in the control of both groups as regard as an ecofriendly and economically rational practice. Here, Bacillus thuringiensis (Bt) was used to study its capability to prime tomato resistance against fusarium wilt caused by the fungus Fusarium oxysporum f. sp. lycopersici (Fol). Priming of tomato cv. Falat C.H. seedlings was performed at 4-5 leaf stage and leaf samples were analyzed 3, 18, 24, 48 and 72 hours after fungal treatment (hat). The rate of hydrogen peroxide (H2O2) and changes in the relative transcription of the antioxidant enzyme genes such as superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) were evaluated using qRT-PCR. No significant change was observed in the relative transcription of the CAT gene. The relative transcription of SOD, and GST genes was increased with time in the treated plants compared to control plants. The highest rate of relative transcription of SOD was found at 18 and 24 hat, and for GST at 18 and 72 hat. The increment of genes transcripts was in agreement with the reduced level of H2O2 in Bt-primed plants. These results are in accordance with the effectiveness of Bt in the induction of tomato systemic resistance to the F. oxysporum f. sp. lycopersici.

Keywords

[1] Srinivas, C., Nirmala Devi, D., Narasimha, K.M., Dhananjaya, C.M., Lakshmeesha, T.R., Pratap, B.S., Kumar, N.K., Niranjana, S.R., Hashem, A., Alqaeawi, A.A., Tabassum, B., Fathi, E.A.A., Chandra, S.N., Srivastava, R.K. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity- A review. Saud J Biol Sci, 26: 1315-1324.
[2] Khan, N., Maymon, M., Hirsch, A.M. 2017. Combating Fusarium infection using Bacillus-based antimicrobials. Microorganisms, 5: 75.
[3] De Silva, N.I., Lumyong, S., Hyde, K.D., Bulgakov, T., Phillips, A.J.L., Yan, J.Y. 2016. Mycosphere essays 9: defining biotrophs and hemibiotrophs. Http://cmuir.cm.ac.th/jspui/handle/6653943832/55100 
[4] Masheva, S., Yankova, V., Markova, D., Lazarova, T., Naydenov, M., Tomlekova, N., Sarsu, F., Dincheva, T. 2016. Use of microbioagents to reduce soil pathogens and root-knot nematodes in greenhouse-grown tomatoes. Bulg J Agric Sci, 22: 91-97.
[5] Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J., Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev, 64: 548-572.
[6] Azizoglu, U. 2019. Bacillus thuringiensis as a biofertilizer and biostimulator: a mini-review of the little known plant growth-promoting properties of Bt. Curr Microbiol, 76: 1379-1385.
[7] Pakdaman, B.S. 2021. Bacillus thuringiensis Berliner: a key biological agent for sustainable agriculture. J Biotechnol Biores, 3: JBB.000551.2021.
[8] Lehmann, S., Serrano, M., L’Haridon, F., Tjamos, S.E., Metraux, J.P. 2015. Reactive oxygen species and plant resistance to fungal pathogens. Phytochem, 112: 54-62.
[9] Yang, T., Meng, Y., Chen, L.J., Lin, H.H., Xi, D.H. 2016. The roles of alpha-momorcharin and jasmonic acid in modulating the response of Momordica charantia to cucumber mosaic virus. Front Microbiol, 7: 1796.
10] Dasuri, K., Zhang, L., Keller, J.N. 2013. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Medic, 62: 170-185.
[11] Santos, A.A., Silveira, J.A.G., Bonifacio, A., Rodrigues, A.C., Figueiredo, M.V.B. 2018. Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt stress. Braz J Microbiol, 49: 513-521.
[12] Bowler, C., Montagu, M.V., Inze, D. 1992. Superoxide dismutase and stress tolerance. Ann Rev Plant Biol, 43: 83-116.
[13] Gullner, G., Komives, T., Király, L., Schröder, P. 2018. Glutathione S-transferase enzymes in plant-pathogen interactions. Front Plant Sci, 9: 1836.
[14] Schneider, C., Porter, N.A., Brash, A.R. 2008. Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem, 283: 15539-15543.
[15] Katsuhara, M., Otsuka, T., Ezaki, B. 2005. Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci, 169: 369-373.
[16] Tian, S.P., Yao, H.J., Deng, X., Xu, X.B., Qin, G.Z.,Chan, Z.L. 2007. Characterization and expression of β-1, 3-glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii. Phytopathology, 97: 260-268.
[17] Kloepper, J.W., Ryu, C.M., Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266.
[18] Ongena, M., Duby, F., Jourdan, E., Beaudry, T., Jadin, V., Dommes, J., Thonart, P. 2005. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol, 67: 692-698.
[19] Torres, M.A., Jones, J.D., Dangl, J.L. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol, 141: 373-378.
[20] Lacy, G., Lukezic, F. 2006. Laboratory Exercises for Plant pathogenic bacteria, pp. 89-100. In: Trigiano, R.N., Windham, M.T., Windham, A.S. (eds.). Plant Pathology Concepts and Laboratory Exercises. CRC Press, London.
[21] Davari, B., Limoee, M., Khodavaisy, S., Zamini, G., Izadi, S. 2015. Toxicity of entomopathogenic fungi, Beauveria bassiana and Lecanicillium muscarium against a field-collected strain of the German cockroach Blattella germanica (L.) (Dictyoptera: Blattellidae). Trop Biomed, 32: 463-470.
[22] Livak, K.J., Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 ΔΔCT method. Methods, 25: 402-408.
[23] Pfaffl, M.W., Horgan, G.W., Dempfle, L. 2002. Relative expression software tool (REST®) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acid Res, 30: e36.
[24] Loreto, F., Velikova, V. 2001. Isoprene produced by leaves protect the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol, 124: 1781-1787.
[25] Hung, S.H., C.W. Yu, Lin, C.H. 2005. Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin, 46: 1-10.
[26] Hassanuzzaman, M., Bhuyan, M.H.M.B., Zulfiqar, F., Raza, A., Mohsin, S.M.,Al Mahmud, J., Fujita, M., Fotopoulos, V. 2020. Review, Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9: 681.
[27] Han, Q., Chen, R., Yang, Y., Cui, X., Ge, F., Chen, C., Liu, D. 2016. A glutathione S-transferase gene from Lilium regale Wilson confers transgenic tobacco resistance to Fusarium oxysporum. Sci Hort, 198: 370-378.
[28] López-Díaz, C., Rahjoo, V., Sulyok, M., Ghionna, V., Martín-Vicente, A., Capilla, J., Di Pietro, A., López-Berges, M.S. 2018. Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Plant Pathol, 19: 440-453.
[29] Nirmaladevi, D., Venkataramana, M., Srivastava, R.K., Uppalapati, S.R., Kumar, V.G., Yli-Mattila, T., Clement, K.M.T., Srinivas, C., Niranjana, S.R., Chandra, N.S. 2016. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Sci Rep, 6: 21367. 
[30] Pandaranayaka, E.P.J., Frenkel, O., Elad, Y., Prusky, D., Harel, A. 2019. Network analysis exposes core functions in major lifestyles of fungal and oomycete plant pathogens. BMC Genomics 20: 1020.
[31] Mahmud, J.A., Bhuyan, M.H.M.B., Anee, T.I., Nahar, K., Fujita, M., Hasanuzzaman, M. 2019. Reactive oxygen species metabolism and antioxidant defense in plants under metal/metalloid stress, pp. 221-257. In: Hassanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds.). Plant Abiotic Stress Tolerance. Springer, Cham.
[32] Mukherjee, A.K., Carp, M.J., Zuchman, R., Ziv, T., Horwitz, B.A., Gepstein, S. 2010. Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J Proteomics, 73: 709-720.
[33] Martínez-Márquez, A., Martínez-Esteso, M.J., Vilella-Antón, M.T., Sellés-Marchart, S., Morante-Carriel, J.A., Hurtado, E., Palazon, J., Bru-Martinez, R. 2017. A Tau class glutathione-S-transferase is involved in trans-resveratrol transport out of grapevine cells. Front Plant Sci, 8: 1457.
[34] Agudeo-Romero, P., Erban, A., Rego, C., Carbonell-Bejerano, P., Nascimento, T., Sousa, L., Martinez-Zapater, J.M., Kopka, J., Margarida, A.F. 2015. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. J Exp Bot, 66: 1769-1785.
[35] Ahn, S.Y., Kim, S.A., Yun, H.K. 2016. Glutathione S-transferase genes differently expressed by pathogen-infection in Vitis flexuosa. Plant Breed Biotech, 4: 61-70.
[36] Thatcher, L.F., Kamphuis, L.G., Hane, J.K., Onate-Snchez, L., Singh, K.B. 2015. The Arabidopsis KH-domain RNA-binding protein ESR1 functions in components of jasmonate signaling, unlinking growth restraint and resistance to stress. PLoS ONE, 10: e0126978.
[37] Wei, L., Jian, H., Lu, K., Filardo, F., Yin, N., Liu, L., Qu, C., Li, W., Du, H., Li, J. 2016. Genome-wide association analysis and differential expression analysis of resistance to sclerotinia stem rot in Brassica napus. Plant Biotechnol J, 14: 1368-1380.
[38] Seifbarghi, S., Borhan, M.H., Wei, Y., Coutu, C., Robinson, S.J., Hegedus, D.D. 2017. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC Genomics, 18: 266.
[39] Gong, Q., Yang, Z., Chen, E., Sun, G., He, S., Butt, H.I., Zhang, C., Zhang, X., Yang, Z., Du, X., Li, F. 2018. A phi-class glutathione S-transferase gene for verticillium wilt resistance in Gossypium arboreum identified in a genome-wide association study. Plant Cell Physiol, 59: 275-289.
[40] Mandal, S., Mitra, A., Mallick, N. 2008. Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Pathol, 72: 56-61.
[41] Helepciuc, F.E., Mitoi, M.E., Manole-Paunescu, A., Aldea, F., Brezeanu, A., Petruta, C.C. 2014. Induction of plant antioxidant system by interaction with beneficial and/or pathogenic microorganisms. Rom Biotechnol Lett, 19: 9366-9375.
[42] Christou, A., Antoniou, C., Christodoulou, C., Hapeshi, E., Stavrou, I., Michael, C., Fatta-Kassinos, D., Fotopoulos, V. 2016. Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants. Sci Tot Environ, 557: 652-664.
[43] Nianiou-Obeidat, I., Madesis, P., Kissoudis, C., Voulgari, G., Chronopoulou, E., Tsaftaris, A., Labrou, N.E. 2017. Plant glutathione transferase-mediated stress tolerance: Functions and biotechnological applications. Plant Cell Rep, 36: 791-805.
[44] Hassanuzzaman, M., Bhuyan, M.H.M.B., Anee, TI, Parvin, K., Nahar, K., Al Mahmud, J., Fujita, M. 2019. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8: 384.
[45] Foyer, C.H., Noctor, G. 2011. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol, 155: 2-18.
[46] Herman, M.A.B., Davidson, J.K., Smart, C.D. 2008. Induction of plant defense gene expression by plant activators and Pseudomonas syringae pv. tomato in greenhouse-grown tomatoes. Phytopathology, 98: 1226-1232.
[47] Safaie-Farahani, A., Taghavi, M. 2017. Transcript analysis of some defense genes of tomato in response to host and non-host bacterial pathogens. Mol Biol Res Commun, 6: 177-183.
[48] Djami-Tchatchou, A.T., Matsaunyane, L.B.T., Ntushelo, K. 2019. Gene expression responses of tomato inoculated with Pectobacterium carotovorum subsp. carotovorum. Microbiologyopen, 8: e911. 
Volume 8, Issue 2
December 2020
Pages 29-37
  • Receive Date: 29 November 2021
  • Revise Date: 09 February 2022
  • Accept Date: 12 February 2022
  • First Publish Date: 12 February 2022