Endogenous Peptide Signals in Arabidopsis thaliana, their receptors and their role in innate immunity

Document Type : Review article


Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Evin, Tehran, Iran


In plant innate immunity, the first line of defense against microbial pathogens is triggered by the perception of molecular signatures of the pathogens, by a highly sensitive membrane resident immune receptors. These pathogen-associated molecular patterns (PAMPs) are perceived by pattern-recognition receptors (PRRs) of the host to initiate pattern-triggered immunity (PTI). The endogenous plant signals, which are called damage-associated molecular patterns (DAMPs), are generated under different circumstances such as wounding, biotic and abiotic stresses. The DAMPs can activate the PTI and subsequently trigger the immune system in plants. These peptide signals called plant elicitor peptides (Peps) first discovered in Arabidopsis thaliana and later their orthologues were identified in different plant species. Peps are involved in immunity against diverse biotic and abiotic stresses and can fine-tune immune signaling pathways. So far, eight endogenous signals (AtPep1 to AtPep8) are discovered in the model plant A. thaliana. Recent studies revealed that the Pep members are not redundant and each of them has a specific function. AtPeps-triggered immunity is emerging as a highly complex, dynamic and a coordinated process involved in immune signaling cascades and consequently induces adequate defense responses. Therefore, it is possible to apply synthetic Peps to induce the immune system against microbial infections in plants. Here, the recent researches and progresses on Pep-triggered signaling are presented from their first discovery until now. Furthermore, the finding of their corresponding receptors AtPEPR1 and AtPEPR2 is explained in detail. Moreover, the subsequent events in the cells as the consequence of AtPeps perception are highlighted.  


Main Subjects

  • Couto, D., and Zipfel, C. 2016. Regulation of pattern recognition receptor signaling in plants. Rev. Immunol, 16: 537–552.
  • Safaeizadeh, M., and Boller, T. 2019. Differential and tissue-specific activation pattern of the AtPROPEP and AtPEPR genes in response to biotic and abiotic stress in Arabidopsis thaliana. Plant Signal Behav, 14, e1590094.
  • Li, Q., Wang, C., and Mou, Z. 2020. Perception of Damaged Self in Plants. Plant Physiol, 182(4): 1545-1565. .
  • Safaeizadeh, M., Boller, T., and Becker, C. 2021.Transcriptomic profiling uncovers novel players in innate immunity inArabidopsis thaliana Cold Spring Harbor. Biorxiv.. 01.02.425067.
  • Dressano, K., Weckwerth, P.R., Poretsky, E., Takahashi, Y., Villarreal, C., Shen, Z., Schroeder, J.I., Briggs, S.P., and Huffaker, A. 2020. Dynamic regulation of Pep-induced immunity through post-translational control of defence transcript splicing. Nat Plants, 6(8): 1008-1019.
  • Colaianni, N.R., Parys, K., Lee, H.S., Conway, J.M., Kim, N.H., Edelbacher, N., Mucyn, T.S., Madalinski, M., Law, T.F., Jones, C.D., Belkhadir, Y., and Dangl, J.L. 2021. A complex immune response to flagellin epitope variation in commensal communities. Cell Host Microbe, 29: 1-15.
  • Boller, T., and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol, 60: 379–406.
  • Yamaguchi, Y., and Huffaker, A. 2011. Endogenous peptide elicitors in higher plants. Curr. Opin. Plant Biol, 14: 351–357.
  • Huffaker, A., Pearce, G., and Ryan, C.A. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Natl Acad. Sci. USA, 103: 10098–10103.
  • Safaeizadeh, M., Bartels, S., and Boller, T. 2016. Regulation of the AtPROPEP and AtPEPR Genes under Biotic and Abiotic Stress, Studied with Promoter-GUS-reporter Constructs in Arabidopsis thaliana. Epigenetic and Chromatin Regulation Congress 51. Strasburgh, France.
  • Bartels, S., and Boller, T. 2015. Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. J Exp Bot, 66(17): 5183-93.
  • Poretsky, E., Dressano, K., Weckwerth, P., Ruiz, M., Char, S.N., Shi, D., Abagyan, R., Yang, B., and Huffaker, A. 2020. Differential activities of maize plant elicitor peptides as mediators of immune signaling and herbivore resistance. Plant J, 104(6): 1582-1602.
  • Ruiz, C., Nadal, A., Montesinos, E., and Pla, M. 2018. Novel Rosaceae plant elicitor peptides as sustainable tools to control Xanthomonas arboricola pv. pruni in Prunus spp. Mol Plant Pathol, 19(2): 418-431.
  • Foix, L., Nadal, A., Zagorščak, M., Ramšak, Ž., Esteve-Codina, A., Gruden, K., and Pla, M. 2021. Prunus persica plant endogenous peptides PpPep1 and PpPep2 cause PTI-like transcriptome reprogramming in peach and enhance resistance to Xanthomonas arboricola pv. pruni. BMC Genomics, 18;22(1):360.
  • Ruiz, C., Nadal, A., Foix, L., Montesinos, L., Montesi,nos, E., and Pla, M. 2018. Diversity of plant defense elicitor peptides within the Rosaceae. BMC Genet, 23;19(1):11.
  • Lori, M., van Verk, M.C., Hander, T., Schatowitz, H., Klauser, D., Flury, P., Gehring, C.A., Boller, T., and Bartels, S. 2015. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling. J Exp Bot, 66(17): 5315-25.
  • Lee, M.W., Huffaker, A., Crippen, D., Robbins, R.T., and Goggin, F.L. 2017. Plant elicitor peptides promote plant defences against nematodes in soybean. Mol Plant Pathol. 19(4): 858-869.
  • Furumizu, C., Krabberød, A.K., Hammerstad, M., Alling, R.M., Wildhagen, M., Sawa, S., and Aalen, R.B. 2021. The sequenced genomes of nonflowering land plants reveal the innovative evolutionary history of peptide signaling. Plant Cell, 24;33(9): 2915-2934.
  • Ross, A., Yamada, K., Hiruma, K., Yamashita-Yamada, M., Lu, X., Takano, Y., Tsuda, K., and Saijo, Y. 2014. The Arabidopsis PEPR pathway couples local and systemic plant immunity. EMBO Journal, 33: 62–75.
  • Flury, P., Klauser, D., Schulze, B., Boller, T., and Bartels, S. 2013. The anticipation of danger: microbe-associated molecular pattern perception enhances AtPep-triggered oxidative burst. Plant Physiol, 161: 2023–35.
  • Wang, L., Einig, E., Almeida-Trapp, M., Albert, M., Fliegmann, J., Mithöfer, A., Kalbacher, H., and Felix, G. 2018. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nat Plants, 4(3): 152-156.
  • Hander, T., Fernández-Fernández, Á.D., Kumpf, R.P., Willems, P., Schatowitz, H., Rombaut, D., Staes, A., Nolf, J., Pottie, R,, Yao, P., Gonçalves, A., Pavie, B., Boller, T., Gevaert, K., Van Breusegem, and F., Bartels, S. 2019. Stael S. Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides. Science, 22;363(6433).
  • Logemann, E., Birkenbihl, R.P., Rawat, V., Schneeberger, K., Schmelzer, E., and Somssich, I.E. Functional dissection of the PROPEP2 and PROPEP3 promoters reveals the importance of WRKY factors in mediating microbe-associated molecular pattern-induced expression. New Phytol, 198: 1165–1177.
  • Nakaminami, K., Okamoto, M., Higuchi-Takeuchi, M., Yoshizumi, T., Yamaguchi, Y., Fukao, Y., Shimizu, M., Ohashi, C., Tanaka, M., Matsui, M., Shinozaki, K., Seki, M., and Hanada, K. 2018. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proc Natl Acad Sci U S A, 29;115(22): 5810-5815.
  • Pearce, G., Moura, D.S., Stratmann, J., and Ryan, C.A. 2001. Production of multiple plant hormones from a single polyprotein precursor. Nature, 14;411(6839): 817-20.
  • Pearce, G., Bhattacharya, R., Chen, Y.C., Barona, G., Yamaguchi, Y., and Ryan, C.A. 2009. Isolation and characterization of hydroxyproline-rich glycopeptides signals in black nightshade leaves. Plant Physiol, 150: 1422–1433.
  • Nietzschmann, L., Gorzolka, K., Smolka, U., Matern, A., Eschen-Lippold, L., Scheel, D., and Rosahl, S. 2019. Early Pep-13-induced immune responses are SERK3A/B-dependent in potato. Sci Rep. 5;9(1):18380. doi: 10.1038/s41598-019-54944-y.
  • Pearce, G., Yamaguchi, Y., Barona, G., and Ryan, C.A. 2010. A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes. Proc Natl Acad Sci U S A. 107(33):14921-5.
  • Yamaguchi, Y., Pearce, G., and Ryan, C.A. The cell surface leucine- rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc. Natl Acad. Sci. USA, 103: 10104–10109.
  • Krol, E., Mentzel, T., Chinchilla, D., Boller, T., Felix, G., Kemmerling, B., Postel, S., Arents, M., Jeworutzki, E., Al-Rasheid, K.A., Becker, D., and Hedrich, R. Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J. Biol. Chem, 285: 13471–13479.
  • Yamaguchi, Y., Huffaker, A., Bryan, A.C., Tax, F.E., and Ryan, C.A. 2010. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell, 22: 508–522.
  • Smakowska-Luzan, E., Mott, G.A., Parys, K., Stegmann, M., Howton, T.C., Layeghifard, M., Neuhold, J., Lehner, A., Kong, J., Grünwald, K., Weinberger, N., Satbhai, S.B., Mayer, D., Busch, W., Madalinski, M., Stolt-Bergner, P., Provart, N.J., Mukhtar, M.S., Zipfel, C., Desveaux, D., Guttman, D.S., and Belkhadir, Y. 2018. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature, 18;553(7688): 342-346.
  • Tang, J., Han, Z., Sun, Y., Zhang, H., Gong, X., and Chai, J. 2015. Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Research, 25: 110–120.
  • Pearce, G., Yamaguchi, Y., Munske, G., and Ryan, C.A. 2008. Structure-activity studies of AtPep1, a plant peptide signal involved in the innate immune response. Peptides, 29: 2083–2089.
  • Postel, S., Küfner, I. Beuter, C., Mazzotta, S., Schwedt, A., Borlotti, A., Halter, T., Kemmerling, B., and Nurnberger, T. 2010. The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. Eur. J. Cell Biol, 89: 169–174.
  • Schulze, B., Mentzel, T., Jehle, A.K., Mueller, K., Beeler, S., Boller, T., Felix, G., and Chinchilla, D. 2010. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J. Biol. Chem, 285: 9444–9451.
  • Tintor, N., Ross, A., Kanehara, K., Yamada, K., Fan, L., Kemmerling, B., Nürnberger, T., Tsuda, K., and Saijo, Y. Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. Proc. Natl Acad. Sci. USA, 110: 6211–6216.
  • Huffaker, A., and Ryan, C.A. 2007. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Natl Acad. Sci. USA, 104:10732–10736.
  • Sun, Y., Li, L., Macho, A.P., Han, Z., Hu, Z., Zipfel, C., Zhou, J., and Chai, J. 2013. Structural Basis for flg22-Induced Activation of theArabidopsis FLS2-BAK1 Immune Complex. Science, 6158: 624–628. 
  • Wang, Z., and Gou, X. 2021. The First Line of Defense: Receptor-like Protein Kinase-Mediated Stomatal Immunity. Int J Mol Sci. 29;23(1):343. doi: 10.3390/ijms23010343.
  • Choi, J.H., Oh, E.S., and Oh, M.H. 2021. Phosphorylation of BIK1 is critical for interaction with downstream signaling components. Genes Genomics, 43(11): 1269-1276.
  • Qi, Z., Verma, R., Gehring, C., Yamaguchi, Y., Zhao, Y., Ryan, C.A., and Berkowitz, G.A. 2010. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ Proc. Natl Acad. Sci. USA, 107: 21193–2198.
  • Ranf, S., Eschen-Lippold, L., Pecher, P., Lee, J., and Scheel, D. 2011. Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage associated molecular patterns. Plant Journal, 68: 100–113.
  • Ma, Y., Walker, R.K., Zhao, Y., and Berkowitz, G.A. Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants. Proc. Natl Acad. Sci. USA, 109: 19852–19857.
  • Moreau, M., Lindermayr, C., Durner, J., and Klessig, D.F. NO synthesis and signaling in plants--where do we stand? Physiologia Plantarum, 138: 372–383.
  • Baxter, A., Mittler, R., and Suzuki, N. 2014. ROS as key players in plant stress signalling. exp. Bot, 65: 1229–1240.
  • Bartels, S., Lori, M., Mbengue, M., van Verk, M., Klauser, D., Hander, T., Rainer, B., Robatzek, S., and Boller, T. 2013. The family of AtPeps and their precursors in Arabidopsis: Differential expression and localization but similar induction of pattern-triggered immune responses. J. Exp. Bot, 64: 5309–5321.
  • Stegmann, M., Anderson, R.G., Ichimura, K., Pecenkova, T., Reuter, P., Zarsky, V., McDowell, J.M., Shirasu, K., and Trujillo, M. The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP- triggered responses in Arabidopsis. Plant Cell, 24: 4703–4716.
  • Beck, M., Wyrsch, I., Strutt, J., Wimalasekera, R., Webb, A., Boller, T., and Robatzek, S. Expression patterns of flagellin sensing 2 map to bacterial entry sites in plant shoots and roots. J. Exp. Bot, 65: 6487–6498.
  • Huffaker, A., Pearce, G., Veyrat, N., Erb, M., Turlings, T.C., Sartor, R., Shen, Z., Briggs, S.P., Vaughan, M.M., Alborn, H.T., Teal, P.E., and Schmelz, E.A. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc. Natl Acad. Sci. USA, 110: 5707–5712.
  • Dressano, K., Weckwerth, P.R., Poretsky, E., Takahashi, Y., Villarreal, C., Shen, Z., Schroeder, J.I., Briggs, S.P., and Huffaker, A. 2020. Dynamic regulation of Pep-induced immunity through post-translational control of defence transcript splicing. Nat Plants. 6(8):1008-1019.
  • Bartels, S., and Boller, T. 2015. Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress and development. J. Exp. Bot, 66: 5183–
  • Huffaker, A., Dafoe, N.J., and Schmelz, E.A. 2011. ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol, 155(3): 1325-1338.
  • Safaeizadeh, M. 2021. Study the effect of salt treatment on the expression of the AtPropep family in Arabidopsis thaliana. Ninth International Congress on Biology, Semnan, Iran. 21: 0797.
  • Safaeizadeh, M., and Minae, D. 2021. Study the effect of oil extracted Pseudomonas aeruginosa to stimulate immune system in Arabidopsis thaliana. Ninth International Congress on Biology, Semnan, Iran. 21: 0796.
  • Poncini, L., Wyrsch, I., Dénervaud, Tendon, V., Vorley, T., Boller, T., Geldner, N., Métraux, J.P., and Lehmann, S. 2017. In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer. PLoS One, 3;12(10): e0185808.
  • Pastor-Fernández, J., Gamir, J., Pastor, V., Sanchez-Bel, P., Sanmartín, N., Cerezo, M., and Flors, V. 2020. Arabidopsis Plants Sense Non-self Peptides to Promote Resistance Against Plectosphaerella cucumerina. Front Plant Sci, 8;11:529.
  • Huffaker, A. 2015. Plant elicitor peptides in induced defense against insects. Curr Opin Insect Sci, 9: 44-50.
  • Shinya, T., Yasuda, S., Hyodo, K., Tani, R., Hojo, Y., Fujiwara, Y., Hiruma, K., Ishizaki, T., Fujita, Y., Saijo, Y., and Galis, I. 2018. Integration of danger peptide signals with herbivore-associated molecular pattern signaling amplifies anti-herbivore defense responses in rice. Plant J, 94(4): 626-637.