Expression pattern analysis of transcription factors from Aeluropus littoralis in response to salt stress and recovery condition.

Document Type: Research Paper


1 Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

2 2Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

3 Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari agricultural sciences and natural resources university, Sari, Iran


Salinity is one of the most important abiotic stresses that decrease crop production. Transcription factors (TFs) are prominent regulators in plant responses to abiotic stress. In the present study, the expression pattern of four salt-induced genes encoding transcription factors, namely, MYB, RF2, GTF, and ARID was studied in response to salt stress (sodium chloride) and recovery conditions. The results of quantitative real-time PCR (qPCR) showed that expression of genes was influenced by salt stress in A. littoralis. The expression level of all genes increased after 6 hours treatment by salt and after that, it drastically decreased with promoting of stress duration in both roots and shoots tissues but in a different manner. The expression of MYB gene in root (68.44) was the higher than shoot (38.57) after 6 hours of salt treatment, while the expression of other studied genes in the shoot was higher than root. At the recovery stage, the up-regulated expression of genes in different tissues gradually decreased and finally gets a stable value. The result showed that the studied transcription factors play an important role in tolerance of A. littoralis to salinity and could be used as an informative resource in the future breeding programs aimed to develop salt tolerant plants. Also, the response of A. littoralis to salt stress depends on the tissue type and duration of plant exposure to salt.


Main Subjects

[1] Modarresi, M., Nematzadeh, G.A. and Zarein, M. 2013. Glyceraldehyde-3-phosphate Dehydrogenase Gene from Halophyte Aeluropus lagopoides: Identification and Characterization. J Crop Imp, 27: 281-290.

[2] Kamkar, B., Kafi, M. and Nassiri-Mahallati, M. 2004. Determination of the most sensitive developmental period of wheat (Triticumaestivum) to salt stress to optimize saline water utilization. Australian Agronomy Conference, 12th AAC, 4th ICSC.

[3] Gulzar, S., Khan, M.A., and Ungar, I.A. 2003. Salt tolerance of a coastal salt marsh grass. Commun Soil Sci Plant Anal, 34: 2595-2605.

[4] Malekzadeh, Kh., Niazi, A., Shahriari-Ahmadi, F., Amin Mirshamsi-Kakhaki, A. and Zare-Mehrjerdi, M. 2015. The responses of L-gulonolactone oxidase and HKT2;1 genes in Aeluropus littoralis’ shoots under high concentration of sodium chloride. J Plant Mol Breed, 3(2):28-35.

[5] Mohseni, A., Nematzadeh, G.A., Dehestani, A., Shahin, B. and Soleimani, E. 2015. Isolation, molecular cloning and expression analysis of Aeluropus littoralis Monodehydroascorbate reductase (MDHAR) gene under salt stress. J Plant Mol Breed, 3(1):72-80.

[6] Barrero, J.M., Rodriguez, P.L., Quesada, V., Piqueras, P., Ponce, M.R. and Micol, J.L. 2006. Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell and Envir, 29: 2000-2008.

[7] Yamaguchi-Shinozaki, K. and Shinozaki, K. 2006. Cross-talk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 9:436-442.

[8] Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K. and Yamaguchi- Shinozaki, K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a droughtresponsive cis-element in the early responsive to dehydration stress promoter. The Plant Cell, 16: 2481-2498.

[9] Liu, K., Wang, L., Xu, Y., Chen, N., Ma, Q., Li, F. and Chong, K. 2007. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 226: 1007-1016.

[10] Udvardi, M.K., Kakar, K., Wandrey, M., Montanari, O., Murray, J., Andriankaja, A., Zhang, J.Y., Benedito, V., Hofer, J.M., Chueng, F. and Christopher, D.T. 2007. Legume transcription factors: Global regulators of plant development and response to the environment. Plant Physiol, 144:538–549.

[11] Kilian, J., Peschke, F., Berendzen, K.W., Harter, K. and Wanke, D. 2012. Prerequisites, performance and profits of transcriptional profiling the abiotic stress response. Biochim Biophys Acta, 1819:166-175.

[12] Golldack, D., Lüking, I. and Yang, O. 2011. Plant tolerance to drought and salinity: Stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep, 30:1389-1391.

[13] Zhang, H.X. and Blumwald, E. 2001. Transgenic salt tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol, 19:765–768

[14] Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N. and Tyagi, A.K. 2002. Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet, 106:51-57.

[15] Puranik, S., Bahadur, R.P., Srivastava, P.S. and Prasad, M. 2011. Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv.]. Mol Biotech, 49:138-150.

[16] Zheng, X., Chen, B., Lu, G. and Han, B. 2009. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem. Biophys. Res. Commun, 379: 985-989.

[17] Wang, Q., Guan, Y., Wu, Y., Chen, H., Chen, F. and Chu, C. 2008. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol, 67: 589-602.

[18] Chen, H., Chen, W., Zhou, J., He, H., Chen, L., Chen, H. and Deng, X.W. 2012. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci, 193:8-17.

[19] Fujita, Y., Fujita, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2011. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res., 124:509-525.

[20] Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2012. NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta, 1819:97-103.

[21] Rushton, D.L., Tripathi, P., Rabara, R.C., Lin, J., Ringler, P., Boken, A.K., Langum, T.J., Smidt, L., Boomsma, D.D. and Emme, N.J., Chen, X., Finer, J.J., Shen, Q.J. and Rushton, P.J. 2012. WRKY transcription factors: Key components in abscisic acid signalling. Plant Biotechnol J, 10(1):2–11.

[22] Lippold, F., Sanchez, D.H., Musialak, M., Schlereth, A., Scheible, W.R., Hincha, D.K. and Udvardi, M.K. 2009. AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol, 149:1761-1772.

[23] Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. and Yamaguchi- Shinozaki, K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15:63-78.

[24] Xie, Z., Lee, E.K., Lucas, J.R., Morohashi, K., Li, D., Murray, J.A.H., Sack, F.D. and Grotewold, E. 2010. Role of the stomatal development regulators FLP/ MYB88 in abiotic stress responses. The Plant Cell, 22:2306-2321.

[25] Seo, P.J., Xiang, F.N., Qiao, M., Park, J.Y., Lee, Y.N., Kim, S.G., Lee, Y.H., Park, W.J. and Park. C.M. 2009. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol, 151: 275-289.

[26] Seo, P.J., and Park, C.M. 2010. Myb96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol, 186: 471-483.

[27] Dai, Sh., Petruccelli, S., Ordiz, M.I., Zhang, Zh., Chen, Sh. and Beachy, R.N. 2003. Functional Analysis of RF2a, a Rice Transcription Factor. J Biol Chem, 278(38): 36396-36402.

[28] Deppmann, C.D., Alvania, R.S. and Taparowsky, E.J. 2006. Cross-species annotation of basic leucine zipper factor interactions: Insight into the evolution of closed interaction networks. Mol Biol Evol, 23: 1480-1492.

[29] Nijhawan, A., Jain, M., Tyagi, A.K. and Khurana, J.P. 2008. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol, 146: 333-350.

[30] Shinozaki, K., and Yamaguchi-Shinozaki, K. 2007. Gene networks involved in drought stress response and tolerance. J exp Bot, 58: 221-227.

[31] E, Z.G. Zhang, Y.P., Zhou, J.H. and Wang, L. 2014. Roles of the bZIP gene family in rice. Gene and Mol Res. 13(2): 3025-3036.

[32] Hoagland, D.R. and Arnon, D. I. 1950. The Water-Culture Method For Growing Plants Without Soil. Circular. California Agricultural Experiment Station, 347.

[33] Hashemipetroudi, S.H., Nematzadeh, Gh., Ahmadian, Gh., Yamchi, A. and Kuhlmann, M. 2016. Expression analysis of salt stress related expressed sequence tags (ESTs) from Aeluropus littoralis by quantitative real-time PCR. Biosci. Biotech. Res. Comm. 9(3): 445-456.

[34] Moradi, N., Rahimian, H., Dehestani, A. and Babaeizad, V. 2016. Cucumber Response to Sphaerotheca fuliginea: Differences in Antioxidant Enzymes Activity and Pathogenesis-Related Gene Expression in Susceptible and Resistant Genotypes. J of Plant Mol Breeding, 4(2): 33- 40.

[35] Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. methods, 25:402-408.

[36] Ghanem, M.E., Albacete, A., Martínez-Andújar, C., Acosta, M., Romero-Aranda R., Dodd, I.C., Lutts, S. and Pérez-Alfocea, F. 2008. Hormonal changes during salinity induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot, 59(11):3039-3050.

[37] Jung, C., Seo, J.S., Han, S.W., Koo, Y.J., Kim, C.H., Song, S.I., Nahm, B.H., Choi, Y.D. and Cheong, J.J. 2008. Over-expression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol, 146:623-635.

[38] Zhu, H., Chen, T., Zhu, M., Fang, Q. and Kang, H. 2008. A novel ARID DNA binding protein interacts with SymRK and is expressed during early nodule development in Lotus japonicus. Plant Physiol, 148: 337–347.

[39] Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C. and Lepiniec, L. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Sci, 15: 573-581.

[40] Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B. and Martin, C. 2000. Transcriptional repression by AtMYB4 controls production of UV- protecting sunscreens in Arabidopsis. EMBO J, 19: 6150-6161.

[41] Gonzalez, A., Zhao, M., Leavitt, J.M. and Lloyd, A.M. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/ Myb transcriptional complex in Arabidopsis seedlings. Plant J, 53:814-827.

[42] Raffaele, S., Rivas, S. and Roby, D. 2006. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett, 580: 3498–3504.

[43] Murray, F., Kalla, R., Jacobsen, J. and Gubler, F. 2003. A role for HvGMYB in anther development. Plant J, 33:481-491.

[44] Lee, M.W., Qi, M. and Yang, Y. 2001. A novel jasmonic acid-inducible rice MYB gene associates with fungal infection and host cell death. Mol Plant Microbe Interact, 14: 527-535.

[45] Vannini, C., Locatelli, F., Bracale, M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M., Baldoni, E. and Coraggio, I. 2004. Overexpression of the rice OsMYB4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J, 37: 115-127.

[46] Maeda, K., Kimura, S., Demura, T., Takeda, J. and Ozeki, Y. 2005. DcMYB1 acts as a transcriptional activator of the carrot phenylalanine ammonia-lyase gene (DcPAL1) in response to elicitor treatment, UV-B irradiation and the dilution effect. Plant Mol Biol, 59: 739-752.

[47] Ding, Z., Li, S., An, X., Liu, X., Qin, H. and Wang, D. 2009. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics, 36:17-29.

[48] Mao, X., Jia, D., Li, A., Zhang, H., Tian, S., Zhang, X., Jia, J. and Jing, R. 2011. Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct Integr Genomics, 11:445-465.

[49] Ambawat, S., Sharma, P., & Yadav, N.R. and Yadav, R.C. 2013. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants, 19(3): 307-321.

[50] Rahaie, M., Xue, G.P., Naghavi, M.R., Alizadeh, H. and Schenk, P.M. 2010. A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt tolerant and sensitive genotypes. Plant Cell Rep, 29: 835–844.

[51] Chen, R.M., Ni, Z.F., Nie, X.L., Qin, Y.X., Dong, G.Q. and Sun, Q.X. 2005. Isolation and characterization of genes encoding Myb transcription factor in wheat (Triticum aestivum L.). Plant Sci, 169: 1146-1154.

[52] He, Q., Don, C., Li, J.W., Xie, F., Ma, J., Sun, R., Wang, Q., Zhu, S. and Zhang, B. 2016. Genome wide identification of R2R3-MYB genes and expression analyses during abiotic stress in Gossypium raimondii. Sci Rep, 6, 22980. doi: 10.1038/srep22980.

[53] Yin, Y., Zhu, Q., Dai, S., Lamb, C. and Beachy, R.N. 1997. RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO J, 16: 5247-5259.

[54] Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T. and Parcy, F. 2002.  bZIP transcription factors in Arabidopsis. Trends Plant Sci, 7(3): 106–111.

[55] Vincentz, M., Schlögl, P.S., Corrêa, L.G.G., Kühne, F. and Leite, A. 2001. Phylogenetic relationships between Arabidopsis and sugarcane bZIP transcriptional regulatory factors. Genet Mol Biol., 24(1-4): 55-60.

[56] Hossain, M.A., Cho, J.I., Han, M., Ahn, C.H., Jeon, J.S., An, G. and Park, P.B. 2010. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol, 167: 1512-1520.

[57] Yang, X., Yang, Y.N., Xue, L.J., Zou, M.J., Liu, J.Y., Chen, F. and Xue, H.W. 2011. Rice ABI5-Like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes. Plant Physiol, 156: 1397-1409.

[58] Jin, X.F., Xiong, A.S., Peng, R.H., Liu, J.G., Gao, F., Chen, J.M. and Yao, Q.H. 2010. OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB Rep, 43: 34-39.

[59] Lu, S.J., Yang, Z.T., Sun, L., Sun, L., Song, Z.T. and Liu, J.X. 2012. Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses. Mol. Plant 5: 504-514.

[60] Takahashi, H., Kawakatsu, T., Wakasa, Y., Hayashi, S., and Takaiwa, F. 2012. A rice transmembrane bZIP transcription factor, OsbZIP39, regulates the endoplasmic reticulum stress response. Plant Cell Physiol. 53: 144-153.

[61] Tang, N. Zhang, H. Li, X. Xiao, J. and Xiong, L. 2012. Constitutive Activation of Transcription Factor OsbZIP46 Improves Drought Tolerance in Rice. Plant Physiol, 158: 1755-1768.

[62] Hashemi, S.H., Nematzadeh, Gh., Ahmadian, Gh., Yamchi, A. and Kuhlmann, M. 2016. Identification and validation of Aeluropus littoralis reference genes for Quantitative Real-Time PCR Normalization. J of Biol Res-Thessaloniki, 23: 18.

[63] Szutorisz, H., Dillon, N. and Tora, L.S. 2005. The role of enhancers as centres for general transcription factor recruitment. Trends Biochem Sci, 30(11): 593-599.

[64] Kuhlman, T.C., Cho, H., Reinberg, D. AND Hernandez. N. 1999.  The General Transcription Factors IIA, IIB, IIF, and IIE Are Required for RNA Polymerase II Transcription from the Human U1 Small Nuclear RNA Promoter. Mol Cell Biol, 19(3): 2130-2141.

[65] Kimura, M. and Ishihama, A. 2004. Tfg3, a subunit of the general transcription factor TFIIF in Schizosaccharomyces pombe, functions under stress conditions. Nucleic Acids Res, 32: 6706-6715.

[66] Zheng, B., He, H., Zheng, Y., Wu, W., and McCormick, S. (2014). An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana. PLoS genetics, 10(7), e1004421.

[67] Wilsker, D., Probst, L., Wain, H.M., Maltais, L., Tucker, P.W. and Moran, E. 2005. Nomenclature of the ARID family of DNA-binding proteins. Genomics, 86: 242–251.

[68] Zou, M., Guan, Y., Ren, H., Zhang, F. and Chen, F. 2008. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol, 66: 675–683.

[69] Jia, Z., Lian, Y., Zhu, Y., He, J., Cao, Z. and Wang, G. 2009. Cloning and characterization of a putative transcription factor induced by abiotic stress in Zea mays. Afr J Biotech, 8: 6764-6771.

[70] Dai, X., Xu, Y., Ma, Q., Xu, W., Wang, T., Xue, Y. and Chong, K. 2007. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol, 143: 1739-1751.

[71] Xu, Z.S., Ni, Z.Y., Li, Z.Y., Li, L.C., Chen, M., Gao, D.Y., Yu, X.D., Liu, P. and Ma, Y.Z. 2009. Isolation and functional characterization of HvDREB1-a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. J Plant Res, 122: 121-130.

[72] Qiang, L., Nanming, Z., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2000. Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance. Chinese Sci Bull, 45(11): 970-975.

[73] Lata, C., Bhutty, S., Bahadur, R.P., Majee, M. and Prasad, M. 2011. Association of a SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot, 62(10): 3387-3401.