QTL analysis of yield and yield related traits in bread wheat under salt-stress conditions

Document Type: Research Paper

Authors

1 Seed and Plant Improvement Research Department, Lorestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Khorramabad, Iran

2 Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

3 Department of Plant Breeding, University of Tehran, Karaj, Iran

4 Department of Plant Breeding, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran

5 Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahid-Bahonar University of Kerman

Abstract

In order to identify yield and yield component QTLs under control and salt-stress conditions, a population of 254 recombinant inbred lines (RILs), derived from a cross between two bread wheat cultivars, (Roshan / Sabalan), was assessed. Parents and their 254 recombinant inbred lines (RILs) were evaluated in an alpha-lattice design with two replications in two control and saline environments of Yazd in 2011-2012 cropping season. Yield and yield-related traits were evaluated at harvest time. The genotyping was carried out using SSR and DArT markers. A, B and D genomes were covered by 411.8, 620.4 and 67.5 cM, respectively. Also, a total of 48 QTLs were detected on 11 chromosomes for grain yield, biological yield, harvest index, thousand-kernel weight, grain number per spike, spike weight and spikelet number per spike. Roshan (salt tolerance) alleles were associated with an increase yield under saline conditions. SSR markers including gwm146, gwm577, gwm249 (on chromosomes 2A and 7B) were tightly associated with different QTLs. The major effect QTLs were located on chromosomes 1A and 7B for grain yield, harvest index and spike weight, which were explained 10.2%, 12.98% and 29 % of the total phenotypic variance, respectively. These QTLs and markers could be suitable for marker-assisted selection and gene stacking techniques. Moreover, co-located QTLs were detected on chromosome 2B for evaluated traits.

Keywords

Main Subjects


[1]     Alheit, K. V., Busemeyer, L., Liu, W., Maurer, H. P., Gowda, M., Hahn, V., Weissmaun, S., Ruckelshausen, A., Reif, J. C. and Wϋrschum, T. 2014. Multiple-line cross QTL for biomass yield and plant height in triticale (×TriticosecaleWittmack). TheorAppl Genet, 127:251-260.

[2]     Ayman, Y. A. and Ayman, A. D. 2013. QTL mapping of wheat (TriticumaestivumL.) in response to salt stress. Internat. J. Bio-Technology. Resea, 3:47-60.

[3]     Azadi, A., Mardi, M., MajidiHervan, E., Mohammadi, S. A., Moradi, F., Tabatabaee, M. T., Pirseyedi, S. M., Ebrahimi, M., Fayaz, F., Kazemi, M., Ashkani, S., Nakhoda, B. and Mohammadi-Nejad, G. 2015. QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (TriticumaestivumL.). Plant MolBiol Rep, 33:102-120.

[4]     Böner, A., Schumann, E., Fürste, A., Cöster, H., Leithod, B., Röder, M. S. and Weber, W. E. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (TriticumaestivumL.). TheorAppl Genet, 105: 921-936

[5]     Boyer, J. S. and Bagci, S. A. 1982. Plant productivity and environment. Science, 218:443-448.  

[6]     Cui, F., Zhao, C. H., Li, J., Ding, A. M., Li, X. F., Bao, Y. G., Li, J. M.,  Ji, J. and  Wang, H. G. 2013. Kernel weight per spike: wheat contribute to it at the individual QTL level? Mol Breed, 31:265-278.

[7]     Cui, F., Chunhua, Zh.,Anming, D., Jun, L., Wany, L., Li, X., Bao, Y., Li, J. and Wang, H. 2014. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL population. TheorAppl Genet, 127:659-675.

[8]     Cuthbert, J. L., Somers, D. J., Brule-Babel, A. L., Brown, P. D. and Crown, G. H. 2008: Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (TriticumaestivumL.). TheorAppl Genet, 117:595-608.

[9]     Díaz De León, J. L., Escoppinichi, R., Geraldo, N., Castellanos, T., Mujeeb- Kazi, A. and Röder, M. S. 2011. Quantitative trait loci associated with salinity tolerance in field grown bread wheat. Euphytica, 181:371–383.

[10]  Ding, A. M., Li, J., Cui, F., Zhao, C. H., Ma, H. Y. and Wang, H. G. 2011: Mapping QTLs for yield related traits using two associated RIL populations of wheat. ActaAgronomicaSinica, 37(9):1511-1524.

[11]  Echeverry-Solarte, M., Kumar, A., Simsek, S., Mantovani, E. E., Mc Clean, P. E., Deckard, E. L., Elias, E., Schatz, B. and Mergoum, M.  2015. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary non-supernumerary spikelet genotypes. TheorAppl Genet, 128:893-912.

[12]  El-Hendawy, S. E., Hu, Y., Yakout, G. M., Awad, A. M., Hafiz, S. E. and Schmidhalter, U. 2005. Evaluating salt tolerance of wheat genotypes using multiple parameters. Europ J Agron, 22:243-253.

[13]  EL-Hendawy, S. E., Ruan, Y., Hu, Y. and Schmidhalter, U. 2009. A comparison of screening criteria for salt tolerance in wheat under field and controlled environmental conditions. J Agron Crop Sci, 195:356-367.

[14]  Gang, L., Lijia, J., Lahu, L., Dandan, Q., Jinping, Zh., Panfeng, G., Zhongfu, N., Yingyin, Y., Qixin, S. and Huiru, P. 2014. Mapping QTLs of yield-related traits using RILs population derived from common wheat and Tibetan semi-wild wheat. TheorAppl Genet, 127:2415-2432.

[15]  Genc, Y., Oldach, K., Verbyla, A. P. and Lott, G. 2010. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. TheorAppl Genet, 121:877-894.

[16]  Ghaedrahmati, M., Mardi, M., Naghavi, M. R., MajidiHeravan, E., Nakhoda, B., Azadi, A. and Kazemi, M. 2014. Mapping QTLs associated with salt tolerance related traits in seedling stage of wheat (TriticumaestivumL). J AgrSci Tech, 16:1413-1428.

[17]  Gupta, P. K., Balyan, H. S., Edwards, K. J., Isaac, P., Korzun, V., Röder, M. S., Gautier, M. F., Joudrier, P., Schlatter, A. R. and Dubcovsky, J. 2002. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. TheorAppl Genet, 105:413-422.

[18]  Heidari, B., Sayed-Tabatabaei, B. E., Saeidi, G., Kearsey, M. and Suenaga, K. 2011. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome, 54:517–527.

[19]  Huang, X. Q., Kemp, F. H., Ganal, M. W. and Röder, M. S. 2004. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and synthetic wheat (TriticumaestivumL.). TheorAppl Genet., 109:933–943.

[20]  Kato, K., Miura, H. and Sawada, S. 2000. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. TheorAppl Genet, 101:1114-1121

[21]  Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E. and Newburg, L. 1987. MAPMAKER: An Interactive Computer Package for Constructing Primary Genetic Linkage Maps of Experimental and Natural Populations. Genomics, 1:174-181.

[22]  Li, S., Jia, J. Z., Wei, X. Y., Zhang, X. C., Li, L. Z., Chen, H. M., Fan, Y. D., Sun, H. Y., Zhao, X. H., Lei, T. D., Xu, Y. F., Jiang, F. S., Wang, H. G. and Li, L. H. 2007: An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breeding, 20:167-178.

[23]  Jafari-Shabestari, J., Corke, H. and Qualset, C. O. 1995. Field evaluation of tolerance to salinity stress in Iranian hexaploid wheat landrace accessions. Genetic Resources and Crop Evaluation, 42:147-156.

[24]  Kuchel, H., Williams, K. J., Langridge, P., Eagles, H. A. and Jefferies, S. P. 2007. Genetic dissection of grain yield in bread wheat: I. QTL analysis. TheorAppl Genet, 115:1029-1041.

[25]  Kumar, N., Kulwal, P. L., Balyan, H. S. and Gupta, P. K. 2007. QTL mapping for yield and yield contributing traits in 2 mapping population of bread wheat. Mol Breeding, 19:163-177.

[26]  Mass, E. V. and Grieve, C. M. 1990. Spike and leaf development in salt stressed wheat. Crop Science, 30:1309-1313.

[27]  McCartney, C. A., Somers, D. J., Humphreys, D. G., Lukow, O., Ames, N., Noll, J., Cloutierand, S. and McCallum, B. D. 2005. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × 'AC Domain'. Genome, 48(5):870-883.

[28]  Marza, F., Bai, G. H., Carver, B. Y. and Zhou, W. C. 2006. Quantitative trait loci for yield and related traits in the wheat population Ning7840×Clark. TheorAppl Genet, 112:688-698.

[29]  Mapshoma, L., Langridge, P., Parent, B., Chalmers, K. J., Okada, A. and Mather, D. E. 2014. Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions. TheorAppl Genet, 127:1607-1624.

[30]  Munns, R., Husain, S. and Rivelli, A. R. 2002. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant and Soil, 247:93-105.

[31]  Munss, R. and James, R. A. 2003. Screening methods for salinity tolerance, a case study with tetraploid wheat. Plant and Soil, 253: 201-218.

[32]  Narjesi, V., Mardi, M., Majidi- Hervan, E., Azadi, A. and Naghavi, M. R. 2015. Analysis of quantitative trait loci (QTL) for grain yield and agronomic traits in wheat (TriticumaestivumL) under normal and salt-stress conditions. Plant MolBiol Rep, 1-11 PP.

[33]  Peleg, Z., Saranga, Y., Suprunova, T., Ronin, Y., Röder, M. S., Kilian, A., Korol, A. B. and Fahima, T. M. 2008. High-density Genetic Map of Durum Wheat × Wild Emmer Wheat Based on SSR and DArT Markers. TheorAppl Genet, 117:103-115.

[34]  Peng, J., Ronin, Y., Fahima, T., Roder, M. S., Li, Y., Nevo, E. and Korol, A. 2003. Domestication quantitative trait loci in Triticumdicoccoides, the progenitor of wheat. ProcNatlAcadSci, 100:2489-2494

[35]  Poustini, K. and Siosemardeh, A. 2004. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Res, 85:125-133.

[36]  Quarrie, S. A., Steed, A., Calestani, C., Semikhodskii, A., Lebreton, C., Chinoy, C., Steele, N., Pljevljakusic, D., Waterman, E., Weyen, J., Schondelmaier, J., Habash, D. Z., Farmer, P., Saker, L., Clarkson, D. T., Abugalieva, A., Yessinbekova, M., Turuspekov, Y., Abugalieva, S., Tuberosa, R., Sanguineti, M. C., Hollington, P. A., Aragues, R., Royo, A. and Dodig, D.  2005. A high-density genetic map of hexaploid wheat (TriticumaestivumL.) from the cross Chinese Spring X SQ1 and its use to compare QTLs for grain yield across a range of environments. TheorAppl Genet, 110:965-990.

[37]  Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P. and Ganal, M. W. 1998. A Microsatellite Map of Wheat. Genetics, 149:2007-2023.

[38]  Tang, Y. L., Li, J., Wu, Y. Q., Wel, H. T., Li, C. S., Yang, W. Y. and Chen, F. 2011. Identification of QTLs for yield-related traits in the recombinant inbred line population derived from the cross between synthetic hexaploid wheat derived variety Chuanmai 42 and a Chinese Elite Chuannong 16. Agricultural Sciences (in China), 10(11):1665-1680.

[39]  Torada, A., Koike, M., Mochida, K. and Ogihara, Y. 2006. SSR-based linkage map with new markers using an intraspecific population of com­mon wheat. TheorAppl Genet, 112:1042–1051

[40]  Wang, R. X., Zhang, X. Y., Wu, L., Wang, R., Hai, L., Yan, C. S., You, G. X. and Xiao, S. H. 2008. QTL mapping for grain filling rate and thousand-grain weight in different ecological environments in wheat. ActaAgron Sin, 34:1750-1756.

[41]  Yu, M., Mao, S. L., Chen, G. Y., Wei, Y. M. and Zheng, Y. L. 2014. QTLs for upper most internode and spike length in two wheat RIL populations and their affect upon plant height at an individual QTL level. Euphytica, DOI: 1001007/S10681-014-1156.