A Comparative Analysis of the Hairy Root Induction Methods in Hypericum perforatum

Document Type : Research Paper


1 Department of Plant Breeding and Biotechnology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.

2 Genetics and Agricultural biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Mazandaran, Iran

3 Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.


Hypericum perforatum is a medicinal plant which Hypericin, Hyperforin and phenolic compounds are its active secondary metabolites. Hairy root induction by Agrobacterium rhizogenes in this plant is difficult and has low efficiency. In the present study two inoculation methods, immersion in bacterial suspension and direct injection of A. rhizogenes has been compared. For this purpose, the best conditions for H. perforatum hairy root induction including A. rhizogenes strains (A4, LBA9402, NCPPB2656), plant explants (Stem, Apical bud, leaves), co-cultivation media (MS, ½MS, B5, and ½B5) and Acetosyringone (AS) concentration (0 and 100 µM) were specified and used for comparative analysis. It was found that strain A4, Stem explants, ½MS co-cultivation medium without AS constitute the best conditions for hairy root induction of H. perforatum. Transgenic nature of the potential hairy roots was confirmed using PCR and specific rolB and rolC genes primers. The results showed that the efficiency of applying direct injection method is four times higher than immersion in bacterial suspension in H. perforatum hairy root induction. In general, the results indicate that direct injection can be the method of choice to successful hairy root induction in H. perforatum.


Main Subjects

[1]     Aggarwal, D., Jaiswal, N., Kumar, A. and Reddy, MS. 2013. Factors affecting genetic transformation and shoot organogenesis of Bacopa monnieri (L.) Wettst. J Plant Biochem Biotechnol, 22:382-391.
[2]    Bansal, M., Kumar, A. and Reddy, MS. 2014. Influence of Agrobacterium rhizogenes strains on hairy root induction and ‘bacoside A’production from Bacopa monnieri (L.) Wettst. Acta Physiol Plant, 36:2793-2801.
[3]    Barik, DP., Mohapatra, U. and Chand, PK. 2005. Transgenic grasspea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep, 24:523-531.
[4]    Barnes, J., Anderson, L. A., and Phillipson, J. D. 2001. St John's wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. J Pharm Pharmacol, 53(5):583-600.
[5]    Batra, J., Dutta, A., Singh, D., Kumar, S. and Sen, J. 2004. Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left-and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep, 23:148-154.
[6]    Bertoli, A., Giovannini, A., Ruffoni, B., Guardo, AD., Spinelli, G., Mazzetti, M. and Pistelli, L. 2008. Bioactive constituent production in St. John’s wort in vitro hairy roots. Regenerated plant lines. J Agric Food Chem, 56:5078-5082.
[7]    Bhattacharya, A., Sood, P. and Citovsky, V. 2010. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol, 11:705-719.
[8]    Birot, AM., Bouchez, D., Casse-Delbart, F., Durand-Tardif, M., Jouanin, L., Pautot, V. and Vilaine, F. 1987. Studies and uses of the Ri plasmids of Agrobacterium rhizogenes [transformation, T-DNA]. Plant Physiol Biochem [France].
[9]    Bivadi, V., Zakaria, RA., Zare, N. and Yazdani, B. 2014. Effects of different tissue culture conditions in Hairy roots induction in Hypericum perforatum L. Int J Agric Crop Sci, 7:646.
[10] Boller, T. and He, SY. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science, 324:742-744.
[11] De Kathen, A. and Jacobsen, HJ. 1990. Agrobacterium tumefaciens-mediated transformation of Pisum sativum L. using binary and cointegrate vectors. Plant Cell Rep, 9:276-279.
[12] De Paolis, A., Mauro, ML., Pompom, M., Cardarelli, M., Spano, L. and Costantino, P. 1985. Localization of agropine-synthesizing functions in the T R region of the root-inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid, 13:1-7.
[13] Di Guardo, A., Cellarova, E., Koperdáková, J., Pistelli, L., Ruffoni, B., Allavena, A. and Giovannini, A. 2003. Hairy root induction and plant regeneration in Hypericum perforatum L. J Genet Breed, 57(3):269-278.
[14] Ditt, RF., Nester, E. and Comai, L. 2005. The plant cell defense and Agrobacterium tumefaciens. FEMS Microbiol Lett, 247:207-213.
[15] Doyle, J. and Doyle, JL. 1987. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull, 19:11-15.
[16] Fattahi, M., Nazeri, V., Torras-Claveria, L., Sefidkon, F., Cusido, RM., Zamani, Z. and Palazon, J. 2013. A new biotechnological source of rosmarinic acid and surface flavonoids: Hairy root cultures of Dracocephalum kotschyi Boiss. Ind Crop Prod, 50:256-263.
[17] Franklin, G., Oliveira, M. and Dias, ACP. 2007. Production of transgenic Hypericum perforatum plants via particle bombardment-mediated transformation of novel organogenic cell suspension cultures. Plant Sci, 172:1193-1203.
[18] Franklin, G., Conceição, LF., Kombrink, E. and Dias, ACP. 2008. Hypericum perforatum plant cells reduce Agrobacterium viability during co-cultivation. Planta, 227:1401-1408.
[19] Gamborg, OL., Miller, R. and Ojima, K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res, 50:151-158.
[20] Georgiev, MI., Pavlov, AI. and Bley, T. 2007. Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol, 74:1175.
[21] Giri, A. and Narasu, ML. 2000. Transgenic hairy roots recent trends and applications. Biotechnol Adv, 18:1-22.
[22] Hou, W., Shakya, P. and Franklin, G. 2016. A perspective on Hypericum perforatum genetic transformation. Front Plant Sci, 7:879.
[23] Klemow, K. M., Bartlow, A., Crawford, J., Kocher, N., Shah, J., and Ritsick, M. 2011. Herbal Medicine: Biomolecular and Clinical Aspects. CRC Press, 2(11): 211-228.
[24] Lima, JE., Benedito, VA., Figueira, A. and Peres, LEP. 2009. Callus, shoot and hairy root formation in vitro as affected by the sensitivity to auxin and ethylene in tomato mutants. Plant Cell Rep, 28:1169-1177.
[25] Mehrotra, S., Kumar Kukreja, A., Singh Khanuja, SP. and Nath Mishra, B. 2008. Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electron J Biotechnol, 11:69-75.
[26] Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 15:473-497.
[27] Murch, SJ., KrishnaRaj, S. and Saxena, PK. 2000. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John's wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep, 19:698-704.
[28] Namdeo, AG., Jadhav, TS., Rai, PK., Gavali, S. and Mahadik, KR. 2007. Precursor feeding for enhanced production of Secondary metabolites: A review. Pharmacogn Rev, 1(2):227.
[29] Nilsson, O. and Olsson, O. 1997. Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant, 100:463-473.
[30] Pakdin Parizi, A., Farsi, M., Nematzadeh, GA. and Mirshamsi, A. 2015. Impact of different culture media on hairy roots growth of Valeriana officinalis L. Acta agric Slov, 103(2): 299-305.
[31] Parrott, DL., Anderson, AJ. and Carman, JG. 2002. Agrobacterium induces plant cell death in wheat (Triticum aestivum L.) Physiol Mol Plant Pathol, 60:59-69.
[32] Porter, JR. and Flores, H. 1991. Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci, 10:387-421.
[33] Rao, MVR. and Rao, GJN. 2007. Agrobacterium-mediated transformation of indica rice under Acetosyringone-free conditions. Plant Biotechnol, 24:507-511.
[34] Sara, K., Jafar, Z., Gorbanalli, N. and Ehsan, S. 2012. Optimization of hairy root culture establishment in Chicory plants (Cichorium intybus) through inoculation by Agrobacterium rhizogenes. J Agri Biotech, 4:61-75.
[35] Setamam, NM., Sidik, NJ., Rahman, ZA. and Zain, CRCM. 2014. Induction of hairy roots by various strains of Agrobacterium rhizogenes in different types of Capsicum species explants. BMC Res Notes, 7:414.
[36] Sinnett, D., Richer, C. and Baccichet, A. 1998. Isolation of stable bacterial artificial chromosome DNA using a modified alkaline lysis method. Biotechniques, 24:752-754.
[37] Tao, J. and Li, L. 2006. Genetic transformation of Torenia fournieri L. mediated by Agrobacterium rhizogenes. S Afr J Bot, 72:211-216.
[38] Tiwari, RK., Trivedi, M., Guang, ZC., Guo, GQ. and Zheng, GC. 2007. Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Rep, 26:199-210.
[39] Tiwari, RK., Trivedi, M., Guang, ZC., Guo, GQ. and Zheng, GC. 2008. Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavonoids in hairy roots. Biol Plant, 52:26-35.
[40] Toivonen, L. 1993. Utilization of hairy root cultures for production of secondary metabolites. Biotechnol Prog, 9:12-20.
[41] Tusevski, O., Stanoeva, JP., Stefova, M., Kungulovski, D., Pancevska, NA., Sekulovski, N. and Simic, SG. 2013. Hairy roots of Hypericum perforatum L.: a promising system for xanthone production. Cent Eur J Biol, 8:1010-1022.
[42] Tzfira, T., Yarnitzky, O., Vainstein, A. and Altman, A. 1996. Agrobacterium rhizogenes mediated DNA transfer in Pinus halepensis Mill. Plant Cell Rep, 16:26-31.
[43] Tzfira, T. and Citovsky, V. 2006. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol, 17:147-154.
[44] Vasconsuelo, A. and Boland, R. 2007. Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci, 172:861-875.
[45] Vinterhalter, B., Ninković, S., Cingel, A. and Vinterhalter, D. 2006. Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. Biol Plant, 50:767-770.
[46] Weller, SA., Stead, DE. and Young, JPW. 2006. Recurrent outbreaks of root mat in cucumber and tomato are associated with a monomorphic, cucumopine, Ri-plasmid harboured by various Alphaproteobacteria. FEMS Microbiol Lett, 258:136-143.
[47] Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., and Wang, Q. 2018. Response of plant secondary metabolites to environmental factors. Molecules, 23(4): 762.
[48] Yu, ZZ., Fu, CX., Han, YS., Li, YX. and Zhao, DX. 2006. Salicylic acid enhances jaceosidin and syringin production in cell cultures of Saussurea medusa. Biotechnol Lett, 28:1027-10
[49] Zdravković-Korać, S., Muhovski, Y., Druart, PH., Ćalić, D. and Radojević, L. 2004. Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. Plant Cell Rep, 22:698-704.