Citric acid and hydrogen sulfide application reduce silver nanoparticles damage in green bean (Phaseolus vulgaris) plants

Document Type : Original research paper

Authors

1 Department of Agronomy and plant breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran

2 Department of agronomy and plant breeding, Faculty of agriculture, Shahrood university of technology, Shahrood, Iran

3 Molecular Genetics Dept, Genetics and Agricultural Biotechnology Institute of Tabrestan, Sari Agricultural Sciences and Natural resources university, Sari, Iran

Abstract

Silver nanoparticles are being extensively used in a broad range of applications in our daily routine life. In the present study, it was investigated if citric acid (CA) and hydrogen sulfide (H2S) can mitigate adverse effects of silver nanoparticles (AgNPs) in green bean plants. Green bean seedlings were applied with AgNPs either through soil drenching or foliar spray and were then treated with different concentrations of citric acid and NaHS, as H2S donor. Results indicated that AgNPs induced several stresses in green bean plants. Concomitant foliar and soil appliaction of nanoparticles caused adverse effects on photosynthetic pigments and reduced carotenoid and protein contents, while increasing H2O2 content and superoxide dismutase (SOD), and ascorbate peroxidase (APX) activities. It was revealed that citric acid and H2S application significantly alleviated adverse effects of AgNPs. In the plants challenged with AgNPs, the highest rates of catalase (CAT), glutathione S-transferase (GSTs), and malondialdehyde (MDA) activities were recorded, while these parameters were reduced when plants were also treated with H2S. Application of 1.5 g/L of citric acid caused sharp decreases in CAT, GST and MDA activities. Among the treatments, the highest levels of APX, SOD, and anthocyanin were observed in the plants treated with AgNPs trough both foliar and soil drench method without citric acid and H2S treatment. The findings of the present study would increase our knowledge of the interaction of plants with heavy metals and would be useful for designing sophisticated methods for reducing the damages in the stressed plants.

Keywords

[1]     AbbasiKhalaki, M., Ghorbani, A. &Moameri, M. 2016. Effects of silica and silver nanoparticles on seed germination traits of Thymuskotschyanus in laboratory conditions. J. Rangeland Sci, 6(3): 221-231.
[2]     Abdelaal, Khaled A.A., Attia, Kotb A., Alamery, Salman F., El-Afry, Mohamed M., Ghazy, Abdelhalim I., Tantawy, Dalia S., Al-Doss, Abdullah A., El-Shawy, El-Sayed E., M. Abu-Elsaoud, Abdelghafar, Hafez, Yaser, M. 2020. Exogenous Application of Proline and Salicylic Acid can mitigate the Injurious Impacts of Drought Stress on Barley Plants Associated with Physiological and Histological Characters. Sustainability, 12 (5): 17-36. (doi:10.3390/su12051736)
[3]     Abi, H. 1984. Catalase in vitro. Method of Enzymology, 105: 121-126. (doi.org/10.1016/s00766879(84)05016-3)
[4]     Afshan, S., Ali, S., Bharwana, S. A., Rizwan, M., Farid, M., Abbas, F., &Abbasi, G. H. 2015. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassicanapus L. Environ. Sci. Pollut. Res, 22 (15): 11679-11689. (doi.org/10.1007/s11356-015-4396-8)
[5]     Alexieva, V., Sergiev, I., Mapelli, S. &Karanov, E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell Environ, 24:1337-1344. (doi.org/10.1046/j.1365-3040.2001.00778.x)
[6]     Alharby, H. F., Al-Zahrani, H. S., Hakeem, K. R., & Iqbal, M. 2019. Identification of physiological and biochemical markers for salt (NaCl) stress in the seedlings of mungbean [Vignaradiata (L.) Wilczek] genotypes. Saudi J. Biol. Sci, 26 (5): 1053-1060. (doi.org/10.1016/j.sjbs.2018.08.006)
[7]     Bailey, C. 2004. Active oxygen spicies and antioxidant in seed biology. Seed Sci. Res, 27 (1): 93-107.
[8]     Barzegargolchini, B.A., Movafeghi, A., Dehestani, A. and Mehrabanjoubani, P. 2017a. Morphological and anatomical changes in stems of Aeluropus littoralis under salt stress. J. Plant Sci. Mol. Breed, 5 (1): 40-48. (doi.org/ 10.22058/JPMB.2017.63945.1133)
[9]     Barzegargolchini, B., Movafeghi, A., Dehestani, A. and Mehrabanjoubani, P. 2017b. Increased cell wall thickness of endodermis and protoxylem in Aeluropus littoralis roots under salinity: the role of LAC4 and PER64 genes. J. Plant Physiol, 218: 127-134. (doi.org/ 10.1016/j.jplph.2017.08.002)
[10]  Barzegargolchini, B., Movafeghi, A., Dehestani, A. and MehrabanJoubani, P. 2017c. Morphophysiological changes in salinity-challenged Aeluropus littoralis roots. Planta Persica, 1 (1): 55-63.
[11]  Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels.Anal. Biochem, 44 (1): 276-287. (doi.org/10.1016/0003-2697(71)90370-8)
[12]  Bhat Javaid, A., Shivaraj, S.M., Singh, P., NavadagiDevanna, B., TripathiDurgesh, K., Dash Prasanta, K., SolankeAmolkumar, U., SonahHumiraDeshmukh, R. 2019. Role of Silicon in Mitigation of Heavy Metal Stresses in Crop Plants. Plants, 8 (3): 71. (doi:10.3390/plants8030071).
[13]  Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem, 72(1-2): 248-254. (doi.org/10.1006/abio.1976.9999)
[14]  Calderwood, A. and Kopriva, S. 2014. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide, 41:72-78. (doi.org/10.1016/j.niox.2014.02.005)
[15]  Capaldi, F. R., Gratao, P. L., Reis, A. R., Lima, L. W. and Azevedo, R. A. 2015. Sulfur metabolism and stress defense responses in plants.Trop. Plant Biol, 8(3-4): 60-73.(doi.org/10.1007/s12042-015-9152-1)
[16]  Corpas, F. J., Gonzalez-Gordo, S., Canas, A., and Palma, J. M. 2019. Nitric oxide and hydrogen sulfide in plants: which comes first. J. Exp. Bot, 70 (17): 4391-4404. (doi.org/10.1093/jxb/erz031)
[17]  Dehestani, A., Ahmadian, G., Salmanian, A.H.B., Jelodar, N. and Kazemitabar, K. 2010. Transformation efficiency enhancement of Arabidopsis vacuum infiltration by surfactant application and apical inflorescence removal. Trakia. J. Sci, 8 (1):19-26.
[18]  Dindsa, R.S. 1991. Drought stress, enzymes of glutathione metabolism, oxidation, injury and protein synthesis in Turtularuralis. Plant Physiol, 95 (2): 641-651.
[19]  Dites, J.K., Herth, S. 2011. Plant nanotoxicology. Trends Plant Sci, 16: 582-589.
[20]  Dolatabadi, B., Ranjbar, G., Tohidfar, M. and Dehestani, A. 2014. Genetic transformation of Tomato with three pathogenesis-related protein genes for increased resistance to Fusariumoxysporum f. sp. Lycopersici. J. Plant Mol. Breed, 2 (1): 1-11. (doi:org/ 10.22058/jpmb.2014.8424)
[21]  Ehsan, S., Ali, S., Noureen, S., Mahmood, K., Farid, M., Ishaque, W. and Rizwan, M. 2014. Citric acid assisted phytoremediation of cadmium by Brassicanapus L. Ecotoxicol. Environ. Saf, 106: 164-172.(doi.org/10.1016/j.ecoenv.2014.03.007)
[22]  Emam, H. E., Manian, A. P., Siroka, B., Duelli, H., Redl, B., Pipal, A., & Bechtold, T. 2013. Treatments to impart antimicrobial activity to clothing and household cellulosic-textiles–why “Nano”-silver. J. Cleaner Prod, 39: 17-23. (doi.org/10.1016/j.jclepro.2012.08.038)
[23]  Farid, M., Ali, S., Rizwan, M., Ali, Q., Abbas, F., Bukhari, S. A. H. and Wu, L. 2017. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol. Environ. Saf, 145: 90-102. (doi.org/10.1016/j.ecoenv.2017.07.016)
[24]  Farid, M., Ali, S., Saeed, R., Rizwan, M., Bukhari, S. A. H., Abbasi, G. H. and Ahmad, I. 2019. Combined application of citric acid and 5-aminolevulinic acid improved biomass, photosynthesis and gas exchange attributes of sunflower (Helianthusannuus L.) grown on chromium contaminated soil.  Int. J. Phytorem, 21(8): 760-767. (doi.org/10.1080/15226514.2018.1556595)
[25]  Farkas, J., Peter, H., Christian, P., GellegoUrarrego, J.A., Hessellov, M., Tuoriniemi, J., Gustafsson, S., Olsson, E., Hylland, K., Thomas, K. V. 2011. Characterization on the effluent from a nanosilver producing washing machine. Environ. Int, 37:1057-1062.
[26]  Gullner, G., Komives, T., Kiraly, L. and Schroder, P. 2018. Glutathione S-transferase enzymes in plant-pathogen interactions. Front. Plant Sci, 9: 1836. (doi.org/10.3389/fpls.2018.01836)
[27]  Habig, W. H., Pabst, M. J. and Jakoby, W. B. 1974. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem, 249 (22): 7130-7139.
[28]  Han, Y., Zhang, L., Gu, J., Zhao, J. and Fu, J. 2018. Citric acid and EDTA on the growth, photosynthetic properties and heavy metal accumulation of Iris halophilaPall.cultivated in Pb mine tailings. Int. Biodeterior. Biodegrad, 128: 15-21.
[29]  Hasanuzzaman, M., Nahar, K., Anee, T. I. and Fujita, M. 2017. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants, 23(2): 249-268. (doi.org/10.1007/s12298-017-0422-2)
[30]  Hwang, E.T., Lee, J .H., Chae, Y. J., Kim, Y. S., Kim, B .C., Sang, B., Gu, and M .B. 2007. Analysis of the toxic mode of action of silver nanoparticle using stress specific bioluminescence bactria. Small., 4(6) : 746-750. (doi: 10.1002/smll.200700954)
[31]  Irtelli, B. and Navari-Izzo, F. 2006. Influence of sodium nitrilotriacetate (NTA) and citric acid on phenolic and organic acids in Brassicajuncea grown in excess of cadmium. Chemosphere, 65(8): 1348-1354. (doi.org/10.1016/j.chemosphere.2006.04.014)
[32]  Jin, Z. and Pei, Y. 2015. Physiological implications of hydrogen sulfide in plants: pleasant exploration behind its unpleasant odour. Oxidative Medicine and Cellular Longevity,Article ID 397502, 6 pages. (doi.org/10.1155/2015/397502)
[33]  Kaur, R., Yadav, P., Sharma, A., Thukral, A. K., Kumar, V., Kohli, S. K. and Bhardwaj, R. 2017. Castasterone and citric acid treatment restores photosynthetic attributes in Brassicajuncea L. under Cd (II) toxicity. Ecotoxicol. Environ. Saf, 145: 466-475. (doi.org/10.1016/j.ecoenv.2017.07.067)
[34]  Keramati, S., Pirdashti, H., Babaeizad, V. and Dehestani A. 2016. Essential oil composition of sweet basil (Ocimumbasilicum L.) in symbiotic relationship with Piriformospora indica and paclobutrazol application under salt stress. Acta. Biologica. Hungarica, 67 (4): 412-423. (doi.org/10.1556/018.67.2016.4.7)
[35]  Khosravi, F., Gharanjik, S.H. and Dehestani, A. 2017. Molecular responses of Phytophthoracapsici-challenged cucumber (Cucumis sativus L.) plants as influenced by resistance inducer application. J. Plant Mol. Breed, 5 (2): 1-10. (doi:/org 10.22058/JPMB.2017.69122.1142)
[36]  Ma, X., Geiser-Lee, J., Deng, Y., Kolmakov, A. 2010. Interaction between engineered nanoparticles (ENPS) and plants: phytotoxicity, uptake and accumulation. Sci. Total Environ, 408: 3053-3061.
[37]  Mahdavian, M., Sarikhani, H., Hadadinejad, M. and Dehestani, A. 2020. Putrescine Effect on Physiological, Morphological, and Biochemical Traits of Carrizo Citrange and Volkameriana Rootstocks under Flooding Stress. Inter. J. Fruit. Sci, 20 (2):164-177.
( doi.org/10.1080/15538362.2019.1605560)
[38]  Mahlooji, M., Sharifi, R. S., Razmjoo, J., Sabzalian, M. R. and Sedghi, M. 2018. Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica, 56 (2): 549-556. (doi.org/10.1007/s11099-017-0699-y)
[39]  Mallhi, Z. I., Rizwan, M., Mansha, A., Ali, Q., Asim, S., Ali, S. and Ahmad, P. 2019. Citric Acid Enhances Plant Growth, Photosynthesis, and Phytoextraction of Lead by Alleviating the Oxidative Stress in Castor Beans. Plants, 8 (11): 525.(doi.org/10.3390/plants8110525)
[40]  Maqbool, A., Ali, S., Rizwan, M., Ishaque, W., Rasool, N., urRehman, M. Z. and Wu, L. 2018. Management of tannery wastewater for improving growth attributes and reducing chromium uptake in spinach through citric acid application. Environ. Sci. Pollut. Res, 25 (11): 10848-10856. (doi.org/10.1016/S0076-6879(84)05016-3)
[41]  Mehrian, S. K., Heidari, R. and Rahmani, F. 2015. Effect of silver nanoparticles on free amino acids content and antioxidant defense system of tomato plants. Indian J. Plant Physiol, 20 (3): 257-263. (doi.org/10.1007/s40502-015-0171-6)
[42]  Mehrian, S. K., Heidari, R., Rahmani, F. and Najafi, S. 2016. Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersiconesculentum Mill (tomato) plants. J. Cluster Sci, 27 (1): 327-340. (doi.org/10.1007/s10876-015-0932-4)
[43]  Mengel, K., Planker, R. and Hoffmann, B. 1994. Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthusannuus L.).                 J. Plant Nutr, 17 (6): 1053-1065. (doi.org/10.1080/01904169409364787)
[44]  Miri, S. M., Ahmadi, S. and Moradi, P. 2015. Influence of salicylic acid and citric acid on the growth, biochemical characteristics and essential oil content of thyme (Thymusvulgaris L.). Acad. J. Med. Plants By-products, 2 (4): 141-146.
[45]  MofidNakhaei, M., Abdossi, V., Dehestani, A., Pirdashti, H. and Babaeizad, V. 2018. Enhanced defense responses in Pythium ultimum-challenged cucumber plants induced by potassium phosphite. J. Plant Mol. Breed, 6 (1): 24-33. (doi.org/ 10.22058/JPMB.2018.74694.1147)
[46]  MohammadiPurfard, A., Nouri, M.Z. and DehestaniKolagar, A. 2017. Dissection of the molecular mechanism of salinity stress tolerance in halophyte plant, Aeluropus littoralis using AlSOS genes. Crop Biotechnol, 7 (19): 15-24.
[47]  Mohseni, A., Nematzadeh, G.H.A., Dehestani, A, Shahin, B. and Soleimani, E. 2015. Isolation, molecular cloning and expression analysis of Aeluropus littoralis Monodehydroascorbate reductase (MDHAR) gene under salt stress. J. Plant Mol. Breed, 3 (1): 72-80  (dx.doi.org/10.22058/jpmb.2015.14134)
[48]  Moradi, N., Rahimian, H., Dehestani, A. and Babaeizad, V. 2016. Cucumber Response to Sphaerotheca fuliginea: Differences in antioxidant enzymes activity and pathogenesis-related gene expression in susceptible and resistant genotypes. J. Plant Mol. Breed, 4: 33-40. (doi.org/ 10.22058/JPMB.2016.25533)
[49]  Mostofa, M. G., Rahman, A., Ansary, M. M. U., Watanabe, A., Fujita, M. and Tran, L. S. P. 2015. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci. Rep, 5 (1): 1-17. (doi.org/10.1038/srep14078)
[50]  Moustaka, J., Tanou, G., Giannakoula, A., Adamakis, I. D. S., Panteris, E., Eleftheriou, E. P. and Moustakas, M. 2020. Anthocyanin accumulation in poinsettia leaves and its functional role in photo-oxidative stress. Environ. Exp. Bot, 104065. (doi.org/10.1016/j.envexpbot.2020.104065)
[51]  Nadal, M., Flexas, J. and Gulías, J. 2018. Possible link between photosynthesis and leaf modulus of elasticity among vascular plants: a new player in leaf traits relationships. Ecol. letters, 21 (9): 1372-1379. (https://doi.org/10.1111/ele.13103)
[52]  Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.  Plant Cell Physiol, 22 (5): 867-880. (https://doi.org/10.1093/oxfordjournals.pcp.a076232)
[53]  Neycee, M.A., Nematzadeh, G.H.A., Dehestani, A. and Alavi, M. 2012. Assessment of antifungal effects of shoot extracts in chinaberry (Melia azedarach) against 5 phytopathogenic fungi. Int. J. Agric. Crop. Sci, 4l: 474-77.
[54]  Ozden, M., Demirel, U. and Kahraman, A. 2009. Effects of proline on antioxidant system in leaves of grapevine (Vitisvinifera L.) exposed to oxidative stress by H2O2. Sci. Hortic, 119 (2): 163-168. (doi.org/10.1016/j.scienta.2008.07.031)
[55]  Per, T. S., Masood, A. and Khan, N. A. 2017. Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica juncea L.). Nitric oxide, 68: 111-124. (doi.org/10.1016/j.niox.2016.12.012)
[56]  Porra, R. J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res, 73 (1-3): 149-156. (doi.org/10.1023/A:1020470224740)
[57]  Ramezani, M., KarimiAbdolmaleki, M., Shabani, S. and Dehestani, A. 2017a. The role of potassium phosphite in chlorophyll fluorescence and photosynthetic parameters of downy mildew-challenged cucumber Cucumis sativus plants.              Arch. Phytopathol. Plant Prot, 50 (17-18): 927-940. (doi: 10.1080/03235408.2017.1407470)
[58]  Ramezani, M., Rahmani, F. and Dehestani, A. 2017b. Comparison between the effects of potassium phosphite and chitosan on changes in the concentration of Cucurbitacin E and on antibacterial property of Cucumis sativus. BMC Complementary Altern. Med, 17 (1): 1-6. (doi: 10.1186/s12906-017-1808-y)
[59]  Ramezani, M., Rahmani, F. and Dehestani, A. 2017c. Study of physio-biochemical responses elicited by potassium phosphite in downy mildew-infected cucumber plants.                Arch. Phytopathol. Plant Prot., 50 (11-12):540-554.  (doi.org/10.1080/03235408.2017.1341140
[60]  Ramezani, M., Rahmani, F. and Dehestani, A. 2017d. The effect of potassium phosphite on PR genes expression and the phenylpropanoid pathway in cucumber (Cucumis sativus) plants inoculated with Pseudoperonosporacubensis. Sci. Hortic, 225: 366-372. ( doi: 10.1016/j.scienta.2017.07.022)
[61]  Ramezani, M., Ramezani, F., Rahmani, F. and Dehestani, A. 2018. Exogenous potassium phosphite application improved PR-protein expression and associated physio-biochemical events in cucumber challenged by Pseudoperonosporacubensis. Sci. Hortic, 234: 335-343. (doi: 10.1016/j.scienta.2018.02.042)
[62]  Ryan, P. R., Delhaize, E. and Jones, D. L. 2001. Function and mechanism of organic anion exudation from plant roots.        Annu. Rev. Plant Biol, 52 (1): 527-560. (doi.org/10.1146/annurev.arplant.52.1.527)
[63]  Sah, S., Sorooshzadeh, A., Rezazadehs, H. and Naghdibadi, H. A. 2011. Effect of nano silver and silver nitrate on seed yield of borage. J. Med. Plants Res, 5 (2): 171-175.
[64]  Sairam R.K. Veerabhadra Rao K. and Srivastava G.C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. J. Plant Sci, 163 (5): 1037-1046. (doi.org/10.1016/S0108-9459(02)00278-9)
[65]  Shahrokh, S. and Emtiazi, G. 2009. Toxicity and unusual biological behavior of nanosilver on gram positive and negative bacteria assayed by microtiter-plate. Eur. J. Biol. Sci, 1 (3): 28-31.
[66]  Shakoor, M. B., Ali, S., Hameed, A., Farid, M., Hussain, S., Yasmeen, T. and Abbasi, G. H. 2014. Citric acid improves lead (Pb) phytoextraction in Brassicanapus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol. Environ. Saf, 109: 38-47. (doi.org/10.1016/j.ecoenv.2014.07.033)
[67]  Shi, Q., Bao, Z., Zhu, Z., Ying, Q. and Qian, Q. 2006. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumissativa L. Plant Growth Regul, 48 (2): 127-135. (doi.org/10.1007/s10725-005-5482-6)
[68]  Soorni, J., Kazemitabar, SK., Kahrizi, D., Dehestani, A. and Bagheri, N. 2017. Screening of camelina (Camelina sativa L.) doubled haploid lines for freezing tolerance in the seedling stage. Genetika, 49 (1): 173-181. (doi.org/ 10.2298/GENSR1701173S)
[69]  Stewart, R.R.C. and Bewley, J.D. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol, 65:245–248. (doi.org/10.1104/pp.65.2.245)
[70]  Sun, Y. L. and Hong, S. K. 2011. Effects of citric acid as an important component of the responses to saline and alkaline stress in the halophyte Leymuschinensis (Trin.). Plant Growth Regul, 64 (2): 129-139. (doi.org/10.1007/BF00224236)
[71]  Szafrańska, K., Reiter, R. J. and Posmyk, M. M. 2017. Melatonin improves the photosynthetic apparatus in pea leaves stressed by paraquat via chlorophyll breakdown regulation and its accelerated de novo synthesis. Front. Plant Sci, 8: 878. (doi.org/10.3389/fpls.2017.00878)
[72]  Tripathi, D. K., Singh, S., Singh, S., Srivastava, P. K., Singh, V. P., Singh, S. and Chauhan, D. K. 2017. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisumsativum seedlings. Plant Physiol. and Biochem, 110: 167-177. (doi.org/10.1016/j.plaphy.2016.06.015)
[73]  Vishwakarma, K., Upadhyay, N., Singh, J., Liu, S., Singh, V. P., Prasad, S. M. and Sharma, S. 2017. Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front. Plant Sci, 8: 1501. (doi.org/10.3389/fpls.2017.01501)
[74]  Yan, Z., Ming, D., Cui, J. X., Chen, X. J., Wen, Z. L., Zhang, J. W. and Liu, H. Y. 2018. Exogenous GSH protects tomatoes against salt stress by modulating photosystem II efficiency, absorbed light allocation and H2O2-scavenging system in chloroplasts. J. Integr. Agric, 17 (10): 2257-2272. (doi.org/10.1016/S2095-3119(18)62068-4)
[75]  Yue, J., You, Y., Zhang, L., Fu, Z., Wang, J., Zhang, J. and Guy, R. D. 2019. Exogenous 24-epibrassinolide alleviates effects of salt stress on chloroplasts and photosynthesis in Robiniapseudoacacia L. seedlings.       J. Plant Growth Regul, 38 (2): 669-682. (doi.org/10.1007/s00344-018-9881-0)
[76]  Zhang, H., Hu, L. Y., Hu, K. D., He, Y. D., Wang, S. H. and Luo, J. P. 2008. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J. Integr. Plant Biol, 50 (12): 1518-1529. (doi.org/10.1111/j.1744-7909.2008.00769.x)
[77]  Zhang, H., Hu, S. L., Zhang, Z. J., Hu, L. Y., Jiang, C. X., Wei, Z. J. and Jiang, S. T. 2011. Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharvest Biol. Technol, 60 (3): 251-257. (doi.org/10.1016/j.postharvbio.2011.01.006)
[78]  Zhang, H., Jiao, H., Jiang, C. X., Wang, S. H., Wei, Z. J., Luo, J. P. and Jones, R. L. 2010. Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol. Plant, 32 (5): 849-857. (doi.org/10.1007/s11738-010-0469-y)
[79]  Zhang, M., He, S., Zhan, Y., Qin, B., Jin, X., Wang, M. and Wu, Y. 2019. Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean. PloS one, 14 (12): e0226542. (doi.org/10.1371/journal.pone.0226542)
[80]  Zhu, Y. F., Wu, Y. X., Hu, Y., Jia, X. M., Zhao, T., Cheng, L. and Wang, Y. X. 2019. Tolerance of two apple rootstocks to short-term salt stress: focus on chlorophyll degradation, photosynthesis, hormone and leaf ultrastructures.      Acta Physiol. Plant, 41 (6): 87. (doi.org/10.1080/01904167.2011.580817).
Volume 7, Issue 1
June 2019
Pages 101-114
  • Receive Date: 14 October 2020
  • Revise Date: 16 November 2020
  • Accept Date: 17 November 2020
  • First Publish Date: 17 November 2020