Effect of Sodium Nitroprusside and Some Plant Growth Regulators on Shoot Regeneration and Plantlet Development in Lycopersicon esculentum Mill.

Document Type : Original research paper

Authors

1 Plant breeding and biotechnology department, Agriculture faculty, Tabriz university

2 Plant breeding and biotec department, Agriculture faculty, Tabriz univerisity

3 Plant breeding and biotechnology, Agriculture faculty, Tabriz, university

4 Department of Agriculture, Maku Branch, Islamic Azad University, Maku, Iran

Abstract

Improving plant regeneration skills in tissue culture studies is critical not only for the efficient genetic transformation of commercial crops but also for scientific reports. SNP (Sodium nitroprusside) as a Nitric oxide (NO) donor, plays an important role in the growth and development of plants. In this study, regeneration and plantlet development of Lycopersicon esculentum Mill. was improved using optimized concentrations of plant growth regulators supplemented with sodium nitroprusside. According to the results, among 12 different combinations of plant growth regulators, the MS medium complemented with 2 mg L-1 BAP and 0.2 mg L-1 IAA had a maximum percentage of regeneration (84%). The highest stem length (4.6 cm) and leave number (7) were achieved on MS medium supplemented with 0.5 mg L-1 BAP and 0.2 mg L-1 IAA. Adding of 10 μM sodium nitroprusside to the regeneration medium improved shoot regeneration efficiency (93%) and the number of shoots per explants (7.75). Furthermore, the maximum shoot growth mean, including stem length (11.8) and leaf number (11.2) were achieved on MS medium containing BAP (0.5 mg L-1), IAA (0.2 mg L-1), and 10 μM sodium nitroprusside. It was found that fewer adventitious roots and higher lateral roots were significantly developed in the medium containing IAA and SNP. Our findings indicated that adding SNP to the regeneration medium of L. esculentum Mill. improved shoot regeneration and plant development. This may overcome the problems in proliferation of the tomato plant. 

Keywords

1) Abd El-Hameid, A. R.  2019. In vitro Callus Induction of Tomato and Evaluation of Antioxidant Activity of Aqueous Extracts and Enzymatic Activities in Callus Cultures. International Journal of Advanced Biological and Biomedical Research, 9(1): 9-19. doi: 10.33945/SAMI/IJABBR.2020.5.2.
2) Hammad, A. M., Bashir, H. A., Abdelbagi, A. O., Ishag, A. E., Ali, M. M., Bashir, M. O., Hur, J. H. and Laing, M. D.  2022. Efficacy of indigenous entomopathogenic fungi for the control of the tomato leafminer Tuta absoluta (Meyrick) in Sudan. International Journal of Tropical Insect Science, 42(2): 1449-59. doi.org/10.1007/s42690-021-00663-9.
3) Soundararajan, M., Swamy, G. S. and Gaonkar, S. K., Deshmukh, S. 2018. Influence of triacontanol and jasmonic acid on metabolomics during early stages of root induction in cultured tissue of tomato (Lycopersicon esculentum). Plant Cell, Tissue and Organ Culture (PCTOC), 133(1): 147-57. doi.org/10.1007/s11240-017-1369-2.
4) Javed, S., Mahmood, S., Arshad, M., Kiran, S. and Ahmedah, H. T. 2021. Carotenoids and Cardiovascular Diseases. In Carotenoids: Structure and Function in the Human Body, (pp. 649-696). Springer, Cham. doi.org/10.1007/978-3-030-46459-2_20.
5) Wang, C., Hao, N., Xia, Y., Du, Y., Huang, K. and Wu, T. 2021. CsKDO is a candidate gene regulating seed germination lethality in cucumber. Breeding Science, 71(4): 417-25. doi.org/10.1270/jsbbs.20149.
6) Enayati, M., Abbas, A., Azadi, P. and Alizadeh, H. 2021. Solanum lycopersicum. Iranian Journal of Field Crop Science, 52(2): 1-3. doi: 10.22059/IJFCS.2018.246700.654416.
7) Kashyap, S., Suresh, A. and Tharannum, S. 2022.  Micropropagation of Solanum lycopersicum L. using chemical free formulated organic plant growth media. Plant Science Today, 9(1): 132-6. doi.org/10.14719/pst.1348.
8) Deb, G., Sultana, S., Bhuiyan, M. S., Sarker, K. K. and Papry, A. S. 2019. In vitro plant regeneration of wild eggplant (Solanum sisymbriifolium) to produce large number of rootstocks for tomato grafting. Journal of Advanced Biotechnology and Experimental Therapeutics, 2: 65. doi.org/10.5455/jabet. 2019.d27.
9) Sundararajan, S., Rajendran, V., Sivakumar, H. P., Kumariah, M. and Ramalingam, S. 2022. Growth modulation by nitric oxide donor sodium nitroprusside in in vitro plant tissue cultures–A review. Biologia, 26: 1-3. doi.org/10.1007/s11756-022-01027-5.
10) Hesami, M., Naderi, R., Tohidfar, M. and Yoosefzadeh-Najafabadi, M. 2020. Development of support vector machine-based model and comparative analysis with artificial neural network for modeling the plant tissue culture procedures: effect of plant growth regulators on somatic embryogenesis of chrysanthemum, as a case study. Plant Methods, 16(1): 1-5. doi.org/10.1186/s13007-020-00655-9.
11) Hajihashemi, S. and Jahantigh, O. 2022. Nitric Oxide Effect on Growth, Physiological and Biochemical Processes, Flowering, and Postharvest Performance of Narcissus tazzeta. Journal of Plant Growth Regulation, 7: 1-6. doi.org/10.1007/s00344-022-10596-3.
12) Jahan, B., Rasheed, F., Sehar, Z., Fatma, M., Iqbal, N., Masood, A., Anjum, N. A. and Khan, N. A. 2021. Coordinated role of nitric oxide, ethylene, nitrogen, and sulfur in plant salt stress tolerance. Stresses, 1(3): 181-99. doi.org/10.3390/stresses1030014.
13) Zandonadi, D. B., Santos, M. P., Dobbss, L. B., Olivares, F. L., Canellas, L. P., Binzel, M. L., Okorokova-Façanha, A. L. and Façanha, A. R.  2010. Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta, 231(5): 1025-36. doi.org/10.1007/s00425-010-1106-0.
14) Mahendran, G., Kumar, D., Verma, S. K., Chandran, A., Warsi, Z. I., Husain, Z., Afroz, S., Rout, P. K. and Rahman, L. U. 2021. Sodium nitroprusside enhances biomass and gymnemic acids production in cell suspension of Gymnema sylvestre (Retz.) R. Br. ex. Sm. Plant Cell, Tissue and Organ Culture (PCTOC), 146(1): 161-70. doi.org/10.1007/s11240-021-02058-7.
15) Correa-Aragunde, N., Graziano, M., Chevalier, C. and Lamattina, L. 2006. Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. Journal of experimental botany, 57(3): 581-8. doi.org/10.1093/jxb/erj045.
16) Arun, M., Naing, A.H., Jeon, S. M., Ai, T. N., Aye, T. and Kim, C. K. 2017. Sodium nitroprusside stimulates growth and shoot regeneration in chrysanthemum. Horticulture, Environment, and Biotechnology, 58(1): 78-84. doi.org/10.1007/s13580-017-0070-z.
17) Gulati, A. and Jaiwal, P. K.  1992. In vitro induction of multiple shoots and plant regeneration from shoot tips of mung bean (Vigna radiata (L.) Wilczek). Plant Cell, Tissue and Organ Culture, 29(3): 199-205. doi.org/10.1007/BF00034353.
18) Khalafalla, M. M. and Hattori, K.  2000. Differential in vitro direct shoot regeneration responses in embryo axis and shoot tip explants of faba bean. Breeding science, 50(2): 117-22. doi.org/10.1270/jsbbs.50.117.
19) Raut, R. V., Patil, V. M. and Rajput, J. C.  2019. A rapid and simple method for in-vitro plant regeneration from petiolar region of diploid G. arboreum cotton cultivar (cv. Ambika). doi: 10.9790/264X-0505014955.
20) Rai, N. P., Singh, P. K., Anamika, Y., Malik, N. and Singh, A.  2020. Factors affecting regeneration potential of tomato (Solanum lycopersicum)–A review. International Journal of Bioinformatics and Biological Sciences, 8(2): 18-24. Doi:10.30954/2319-5169.2.2020.5.
21) Raza, M. A., Nawaz, A., Ali, M., Zaynab, M., Muntha, S. T., Zaidi, S. H., Khan, A. R. and Zheng, X. L. 2020. In vitro regeneration and development for the conservation and propagation of tomato plant (Solanum lycopersicum) and currant tomato (s. pimpinellifolium) from two different explants. Applied ecology and environmental research, 18(1): 879-888. Doi:10.15666/aeer/1801_879888.
22) Shokouhi, D. and Bagheri, A. 2021. Growth Dynamics and Cell Viability in Tomato Suspension Cultures Derived from Different Types of Calli. International Journal of Horticultural Science and Technology, 8(1): 25-35. doi:10.22059/IJHST.2020.302676.368.
23) Gerszberg, A., Hnatuszko-Konka, K., Kowalczyk, T. and Kononowicz, A. K. 2016. Efficient in vitro callus induction and plant regeneration protocol for different Polish tomato cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2): 452-8. doi.org/10.15835/nbha44210530.
 24) Jafari, M. and Daneshvar, M. H. 2020. Effects of sodium nitroprusside on indirect shoot organogenesis and in vitro root formation of Tagetes erecta: an important medicinal plant. Polish Journal of Applied Sciences, 5(3): 14-9. doi.org/10.34668/PJAS.2019.5.3.03.
25) Pandey, S., Sundararajan, S., Ramalingam, S. and Pant, B. 2020. Effects of sodium nitroprusside and growth regulators on callus, multiple shoot induction and tissue browning in commercially important Valeriana jatamansi Jones. Plant Cell, Tissue and Organ Culture (PCTOC), 142(3): 653-60. doi.org/10.1007/s11240-020-01890-7.
26) Xu, Z., Shen, Q. and Zhang, G. 2022. The mechanisms for the difference in waterlogging tolerance among sea barley, wheat and barley. Plant Growth Regulation, 20: 1-1. doi.org/10.1007/s10725-021-00789-3.
Volume 9, Issue 2
December 2021
Pages 43-51
  • Receive Date: 07 September 2022
  • Revise Date: 26 November 2022
  • Accept Date: 10 December 2022
  • First Publish Date: 10 December 2022