Molecular biology and (trans) gene expression technology in plant breeding
Arezoo Pourfarid; Ali Pakdin-Parizi; Reza Ghorbani-Nasrabad; Heshmatollah Rahimian
Abstract
Arbuscular mycorrhizal fungi (AMF) symbiosis could mitigate the adverse effects of abiotic stresses in various plants. The aim of this study was to investigate the effect of AMF-inoculation on expression of several stress-responsive genes in two rice cultivars under different water conditions. The seedlings ...
Read More
Arbuscular mycorrhizal fungi (AMF) symbiosis could mitigate the adverse effects of abiotic stresses in various plants. The aim of this study was to investigate the effect of AMF-inoculation on expression of several stress-responsive genes in two rice cultivars under different water conditions. The seedlings of Tarom-Hashemi and Nemat rice cultivars were transplanted in soil with or without G. mosseae spores. At the tilling stage, the AMF-inoculated (+AMF) and AMF-uninoculated (−AMF) plants were subjected to flooded and water deficit conditions (70% field capacity (FC) and 50%FC). The genes expression was evaluated by qRT-PCR and reported relative to control (flooded, -AMF) plants. The results showed lower expression of osDREB2A in +AMF plants in comparison with –AMF plants under water deficient conditions. The expression of OsPIP1;2 was significantly increased in roots of +AMF to –AMF plants. But, the expression of this gene was decreased in shoots of +AMF and –AMF plants in comparison with control plants. The stress-responsive gene transcripts, OsPIP2;3, OsGH3-8, OsLTP, OsAOS2 and OsADC1 in +AMF rice cultivars was higher than -AMF plants at both water deficit conditions. Expression of OsP5CS in +AMF and –AMF plants was increased in comparison with control plants, though, their differences was not significant. In 70%FC, OsEXP15 gene expression of +AMF and –AMF root plants was increased in comparison with control plants. However, under 50%FC the gene expression was decreased and not changed in -AMF and +AMF plants, respectively. It seems AMF induced changes in rice genes expression may enhance tolerance to water deficit conditions.
Molecular biology and (trans) gene expression technology in plant breeding
Hossein Moradi Beidokhti; Valiollah Babaeizad; Heshmatollah Rahimian; Mohammad Ali Tajick Ghanbary; Ali Pakdin-Parizi
Abstract
Citrus bacterial blast disease is one of the prevalent diseases in most citrus-growing regions in the world. Plants use a wide range of mechanisms to defend against pathogens, and the plant-pathogen interaction induces the expression of genes involved in the plant resistance. Furthermore, symbiotic association ...
Read More
Citrus bacterial blast disease is one of the prevalent diseases in most citrus-growing regions in the world. Plants use a wide range of mechanisms to defend against pathogens, and the plant-pathogen interaction induces the expression of genes involved in the plant resistance. Furthermore, symbiotic association between plant and mycorrhizal fungi could effectively promote growth and protect the plant against adverse environmental conditions. In the present study, Serendipita indica-root colonized sour orange seedlings were infected by Pseudomonas viridiflava and the expression patterns of PR1, PR2, PR3, PR4, PR5, PAL, POX, and LOX genes in the early stages of citrus blast disease were investigated using the qRT-PCR at different sampling times. According to the results, the response of defense genes to bacterial infection was time dependent. In the S. indica-colonized sour orange plants, the highest level of PR1, PR4, PAL, POX, PR3, and PR5 genes expression was observed at 48 h after infection, but the expression of PR2 and LOX genes was increased at 72 h after infection compared to the control plants. It seems that S. indica can induce systemic effects and prepare the host plant to increase the expression of defense genes more rapidly once it receives a signal for the presence of the pathogen.
Metabolomics & metabolites engineering in plant breeding
Mahsa Montazeri; Ali Pakdin-Parizi; Hamid Najafi-Zarrini; Mohammad Azadbakht; Ghorbanali Nematzadeh; Zahra Gholami
Abstract
Hypericum perforatum is a medicinal plant which Hypericin, Hyperforin and phenolic compounds are its active secondary metabolites. Hairy root induction by Agrobacterium rhizogenes in this plant is difficult and has low efficiency. In the present study two inoculation methods, immersion in bacterial suspension ...
Read More
Hypericum perforatum is a medicinal plant which Hypericin, Hyperforin and phenolic compounds are its active secondary metabolites. Hairy root induction by Agrobacterium rhizogenes in this plant is difficult and has low efficiency. In the present study two inoculation methods, immersion in bacterial suspension and direct injection of A. rhizogenes has been compared. For this purpose, the best conditions for H. perforatum hairy root induction including A. rhizogenes strains (A4, LBA9402, NCPPB2656), plant explants (Stem, Apical bud, leaves), co-cultivation media (MS, ½MS, B5, and ½B5) and Acetosyringone (AS) concentration (0 and 100 µM) were specified and used for comparative analysis. It was found that strain A4, Stem explants, ½MS co-cultivation medium without AS constitute the best conditions for hairy root induction of H. perforatum. Transgenic nature of the potential hairy roots was confirmed using PCR and specific rolB and rolC genes primers. The results showed that the efficiency of applying direct injection method is four times higher than immersion in bacterial suspension in H. perforatum hairy root induction. In general, the results indicate that direct injection can be the method of choice to successful hairy root induction in H. perforatum.