Molecular biology and (trans) gene expression technology in plant breeding
Fatemeh Keykha akhar; Masoud Fakhrfeshani; Hadi Alipour; Maryam Ameri
Abstract
Algae are an enormous biological group, forming 50% of photosynthetic organisms. In addition to having chlorophyll for the absorption of light photons, algae are rich in red, orange, and yellow carotenoids, which mainly protect cells against harmful radiation and free radicals. Moreover, these organisms ...
Read More
Algae are an enormous biological group, forming 50% of photosynthetic organisms. In addition to having chlorophyll for the absorption of light photons, algae are rich in red, orange, and yellow carotenoids, which mainly protect cells against harmful radiation and free radicals. Moreover, these organisms have phycobiliproteins (red and blue pigments), which are involved in capturing and passing light energy to chlorophylls during photosynthesis and have a wide range of antioxidant properties. Algae also play a key role in substituting artificial colorants with natural colorants due to the adverse side-effects of chemical colorants, especially since natural colors are commonly used by individuals and various industries. Recently, algal pigments have been widely used in medical, nutraceutical, cosmeceutical, and pharmaceutical industries owing to their antioxidant, antidiabetic, anti-obesity, anti-inflammatory, antiaging, antimalarial, and neuroprotective properties. The growing demand for algal bioproducts highlights the importance of evaluating the trends influential factors in their production. The current review study provided an introduction to algal pigment classification, distribution, function, application, and biological production. In addition, we have discussed crucial biochemical pathways, enzymes, and gene/biotechnological modifications, such as transformation and expression regulation, which noticeably affect the metabolism of their sink and source.
Plant breeding for abiotic & biotic stresses
Masoud Fakhrfeshani; Ali Niazi; Fatemeh Keykha akhar; Pedram Assar; Leila Taghipour
Abstract
There is an imbalance between increase rate in demand for agricultural products and the growth rate of agricultural production. Much of this production deficit is attributed to abiotic stresses. These stresses reduce the yield of crops by more than 50%. Obviously, it worth studying any idea which may ...
Read More
There is an imbalance between increase rate in demand for agricultural products and the growth rate of agricultural production. Much of this production deficit is attributed to abiotic stresses. These stresses reduce the yield of crops by more than 50%. Obviously, it worth studying any idea which may lead to reducing the damages of them. In the present research, the transcription level of Catalase in root and shoot of Oryza sativa var. IR64 and Aeluropus littoralis using qtr.PCR and the Aromatic and Instability indices based on amino acid composition were evaluated. The samples were taken at short-term, mid-term and long-term stress span. Analysis of the results showed significant differences in the both gene expression and studied biochemical aspects. The expression of catalase gene in Aeluropus roots was periodic and showed a twice increase and then a decrease however in roots of rice there was just a rise in its expression. In the all sampling of the rice shoots, CAT gene expression levels were either lower or without any significant different in contrast to the control samples. Meanwhile, the rates of expression in most of stressed Aeluropus shoots were significantly higher than control samples. Comparison of the biochemical indices showed that Aeluropus has a relative superiority over rice in terms of amino acid sequences. Based on the evaluated indices, the differences of response to salinity stress in the studied plants could be attributed to the differences in the promoter and nucleotide sequences of their genes.
Plant breeding for abiotic & biotic stresses
Masoud Fakhrfeshani; Farajollah Shahriari-Ahmadi; Ali Niazi; Nasrin Moshtaghi; Mohammad Zare-Mehrjerdi
Abstract
Among abiotic stresses, salinity has been increasing over the time for many reasons like using chemical fertilizers, global warming and rising sea levels. Under salinity stress, the loss of water availability, toxicity of Na+ and ion imbalance directly reduces carbon fixation and biomass production in ...
Read More
Among abiotic stresses, salinity has been increasing over the time for many reasons like using chemical fertilizers, global warming and rising sea levels. Under salinity stress, the loss of water availability, toxicity of Na+ and ion imbalance directly reduces carbon fixation and biomass production in plants. K+ is a major agent that can counteract Na+ stresses, thus the potential of plants to tolerate salinity is strongly dependent on their potassium nutrition. HKTs (High-affinity K+ Transporters) are a family of transporters that mediate Na+-specific or Na+-K+ transport and play a key role in the regulation of ion homeostasis. In this study, we intended to focus on Electrolyte Leakage, ratio of K+/Na+, transcriptomic responses of a subclass two HKT in the roots of Aeluropus littoralis under salt stress. We investigated a noticeably different expression pattern over studied time points and found a snappy increase of AlHKT and rebalance of K+ concentration. It can be suggested that the early and high response of a Na+-K+ coupled transporter acted as a part of A. littoralis salt tolerance.