Morphometric and zymogram patterns of peroxidase and superoxide dismutase enzymes analysis in populations of mosses in north of Iran

Document Type : Original research paper


1 Department of Plant Science, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran

2 Botanical Garden of Nowshahr, Research institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization, AREEO, Nowshahr, Iran


The Hyrcanian forests have a remarkable variety of moss species which research on their taxonomy is of great importance. Since Forsstroemia remotifolia, Homalia besseri and Pseudoleskeella catenulata are exclusive and native mosses species of Hyrcanian forests, so in the current study, fourteen populations from three provinces in the north of Iran including Golestan, Mazandaran and Guilan were collected at the same altitudes in autumn 2017. In order to reveal the relationships among these species and populations, a cluster analysis based on numerical taxonomy and zymogram patterns of peroxidases and superoxide dismutase with Euclidean distances was performed. Numerical taxonomy analysis showed plant length, marginal laminal cell length and middle laminal cell length are appropriate traits to distinguish the species of F. remotifolia, H. besseri and P. catenulata from each other as well as their populations. The zymogram analysis showed genetic variability among species and also within populations of F. remotifolia, H. besseri and P. catenulata. Accordingly, the isozyme banding pattern of peroxidases showed a total of 6, 7 and 5 bands for F. remotifolia, H. besseri and P. catenulata, respectively. However, 4 isozyme bands were detected for superoxide dismutase for all three species. Furthermore, the morphological analyses in some populations was not matched with the isoenzyme banding pattern of enzymes in the current study. In conclusion, the biosystematics studies (morphometry and zymogram patterns of peroxidase and superoxide dismutase) indicate the close relationship between F. remotifolia and P. catenulata.


[1]     Zare, H., Akbarinia, M., Hedenäs, L., and Maassumi, A. A. 2011. Eighteen mosses from the Hyrcanian forest region new to Iran. J Bryol, 33: 62-65.
[2]     Ghahreman, A., Faridi, M., Shirzadian, S., and Attar, F. 2007. New and interesting moss records for Iran. Turk J Bot, 31: 41-48.
[3]     Barbe, M., Fenton, N.J. and Bergeron, Y. 2016. So close and yet so far away: long‐distance dispersal events govern bryophyte metacommunity reassembly. Journal of Ecology, 104: 1707-1719.
[4]     Goffinet, B. 2000. Morphology and classification of mosses. Bryoph Biol, 71-123.
[5]     Akhani, H. and Kürschner, H. 2004. An annotated and updated checklist of the Iranian bryoflora. Cryptogamie. Bryologie, 25: 315-347.
[6]     Frey, W. and Kurschner, H. 2010. New and noteworthy records to the bryophyte flora of Iran. Nova Hedwigia, 90: 503-512.
[7]     Shirzadian, S. 2011. Five new records of mosses to the bryophyte flora of Iran. Phytomorphology, 61: 68-71.
[8]     Buhse, F. and Boissier, E. 1860. Aufzaehlung der auf einer Reise durch Transkaukasien und Persien gesammelten Pflanzen: nebst einleitendem Reiseberichte. Gautier, Moscow.
[9]     Edw, W. 1920. Mosses from the Caspian and Black Sea regions. Bryologist, 90-91.
[10]  Frey, W. 1981. The bryological literature of southwest Asia, J. Hattori. Bot. Lab, 50: 217-229.
[11]  Frey, W. and Kurschner, H. 1977. Studies on the bryophyte flora and vegetation of the Mohammad Reza Shah National Park, N. Iran. Iran. J. Bot, 1: 137-153.
[12]  Frey, W. and Kurschner, H. 1979. Die epiphytische Moosvegetation im hyrkanischen waldgebiet (Nordiran). Reichert Verlag.
[13]  Frey, W. and Kurschner, H. 1983. Contributions towards a bryophyte flora of Iran. New records from Iran. Iran. J. Bot, 2: 13-19.
[14]  Juratzka, J. and Milde, J. 1870. Beitrag zur Mossflora des Orients. Kleinasien, des westliche Persien und den Caucasus betreffend. Verh. Zool. Bot. Ges. Wien 20: 589-602.
[15]  Kurschner, H. 1996. Towards a bryophyte flora of the Near and Middle East. New records from Iran, Jordan, Kuwait, Lebanon, Oman, Saudi Arabia, Syria, and Turkey. Nova Hedwigia, 63: 261-272.
[16]  Kurschner, H. Papp, B. and Akhani, H. 2000. New records to the bryophyte flora of Iran. Studies on the flora and vegetation of the Golestan National Park, NE Iran IV. Nova Hedwigia, 71: 509-518.
[17]  Schiffner, V. 1897. Musci Bornmülleriani. Ein Beitrag zur Cryptogamenflora des Orients. Österreichische Botanische Zeitschrift, 47: 125-132.
[18]  Schiffner, V. 1901. Einige Materialien zur Moosflora des Orients. Österreichische botanische Zeitschrift, 51: 156-161.
[19]  Schiffner, V. 1908. Beiträge zur Kenntnis der Bryophyten von Persien und Lydien. Österreichische Botanische Zeitschrift, 58: 225-231.
[20]  Schiffner, V. 1910. Bryologische Fragmente. Österreichische Botanische Zeitschrift, 60: 431-436.
[21]  Kurschner, H., Kırmacı, M., Erdağ, A., Batsatsashvili, K., and Parolly, G. 2012. Ecology and life strategies of epiphytic bryophyte communities from the Arcto-Tertiary relict forests of the Black and Caspian Sea areas. Nova Hedwigia, 94: 31-65.
[22]  La Farge-England, C. 1996. Growth form, branching pattern, and perichaetial position in mosses: cladocarpy and pleurocarpy redefined. Bryologist, 170-186.
[23]  Patino, J. and Vanderpoorten, A. Bryophyte biogeography. 2018. CRC Crit Rev Plant Sci, 37: 175-209.
[24]  Johnson, M.G. and Shaw, A.J. 2015. Genetic diversity, sexual condition, and microhabitat preference determine mating patterns in Sphagnum (Sphagnaceae) peat‐mosses. Biol J Linn Soc Lond, 115: 96-113.
[25]  Mitra, S. 2017. High content of Dicranin in Anisothecium spirale (Mitt.) Broth., a moss from Eastern Himalayas and its chemotaxonomic significance. Lipids, 52: 173-178.
[26]  Soladoye, M., Sonibare, M., and Chukwuma, E., 2010. Morphometric study of the genus Indigofera Linn. (Leguminosae-Papilionoideae) in south-western Nigeria. Int. J. Bot, 6: 343-350.
[27]  George, N., and Hussein, H. 2014. Biochemical and Molecular Criteria of Some Egyptian Species of Cassia and Senna (Subfamily: Caesalpinioideae-Leguminosae); With Reference To Their Taxonomic Significance. Life Sci J, 11(10).
[28]  Forough, M., Navabpour, S., Ebrahimie, E., Ebadi, A.A. and Kiani, D., 2018. Evaluation of salinity response through the antioxidant defense system and osmolyte accumulation in a mutant rice. JPMB, 6: 27-37.
[29]  Khosravi, F., Gharanjik, S. and Dehestani, A., 2017. Molecular responses of Phytophthora capsici-challenged cucumber (Cucumis sativus L.) plants as influenced by resistance inducer application. JPMB, 5: 1-10.
[30]  Sulpice, R., Trenkamp, S., Steinfath, M., Usadel, B., Gibon, Y., Witucka-Wall, Pyl, E.T., Tschoep, H., Steinhauser, M. C., Guenther, M., Hoehne, M., M. Rohwer, J., Altmann, T., R. Fernie, A and Stitt, M. 2010. Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of Arabidopsis accessions. Plant Cell, 22: 2872-2893.
[31]  Taheri Otaghsara, S.H., Aghajanzadeh, T.A., and Jafari, N. 2020. Comparison of physiological responses of Acer Velutinum Bioss. to air pollutants in Mazandaran and three areas of Tehran. J Plant, 32(4): 837-849.
[32]  Abeles, F.B. and Biles, C.L. 1991. Characterization of peroxidases in lignifying peach fruit endocarp. Plant Physiol, 95: 269-273.
[33]  Khademian Amiri, S., Aghajanzadeh, T.A., Jafari, N., and Mahmoudi, M. 2022. Antioxidative compounds and enzymes, and nutrient elements in Stachys byzantina are altered by climate conditions not by soil parameters. Caspian J. Environ. Sci, 20(2): 1-18
[34]  Shannon, C.E., 1948.  A mathematical theory of communication. MD Comput., 27: 379-423.
[35]  Campisi, P., Lo Re, M. G., Geraci, A., Troia, A., and Dia, M. G. 2014. Studies on the Sicilian populations of Anacolia webbii (Mont.) Schimp(Bartramiaceae, Bryophyta), rare moss in Europe. Plant Biosystems, 148: 874-884.
[36]  Guo, S.-L., Tan, B.C., and Virtanen, V. 2006. Taxonomic and morphometric comments on Macromitrium blumei, M. zollingeri and M. annamense (Orthotrichaceae, Bryophyta). Nova Hedwigia, 82: 467-482.
[37]  Ramaiya, M., Johnson, M.G., Shaw, B., Heinrichs, J., Hentschel, J., von Konrat, M., Davison, P.G. and Shaw, A.J., 2010. Morphologically cryptic biological species within the liverwort Frullania asagrayana. Am J Bot, 97:1707-1718.
[38]  Wyatt, R., Odrzykoski, I.J. and Stoneburner, A. 2013. Isozyme evidence regarding the nature of polyploidy in the moss genus Cinclidium (Mniaceae). The Bryologist,116: 229-237.
[39]  Kophimai, Y., Peintinger, M., Werth, S., Cornejo, C., Scheidegger, C. and Bergamini, A., 2014. Ploidy level, genetic diversity, and differentiation in two closely related mosses, Scorpidium cossonii and S. revolvens (Calliergonaceae). J Bryol, 36: 33-43.
[40]  Sabovljevic, Marko, Milorad Vujicic, Suzana Zivkovic, Vesna Neric, Jasmina Sinzar-Sekulic, Ingeborg Lang, and Aneta Sabovljevic. 2019. Genetic diversity within selected European populations of the moss species Atrichum undulatum as inferred from isozymes. Wulfenia, 26: 208-216.
[41]  Rosengren, F., Hansson, B. and Cronberg, N. 2015. Population structure and genetic diversity in the nannandrous moss Homalothecium lutescens: does the dwarf male system facilitate gene flow. BMC Evol Biol, 15: 270.
[42]  Grundmann, M., Ansell, S.W., Russell, S.J., Koch, M.A. and Vogel, J.C. 2008. Hotspots of diversity in a clonal world—the Mediterranean moss Pleurochaete squarrosa in Central Europe. Mol Ecol, 17: 825-838.
[43]  Rosengren, F., Cronberg, N., Reitalu, T. and Prentice, H.C., 2013. Genetic variation in the moss Homalothecium lutescens in relation to habitat age and structure. Bot, 2013. 91(7): p. 431-441.
[44]  Appelgren, L. and Cronberg, N. 1999. Genetic and morphological variation in the rare epiphytic moss Neckera pennata Hedw. J Bryol, 21: 97-107.
[45]  De Luna, E. and Gomez-Velasco, G. 2008. Morphometrics and the identification of Braunia andrieuxii and B. secunda (Hedwigiaceae, Bryopsida). Syst Bot., 33: 219-228.
[46]  Cano, M.J., Werner, O., and Guerra, J. 2005. A morphometric and molecular study in Tortula subulata complex (Pottiaceae, Bryophyta). Bot J Linn Soc. 149: 333-350.
[47]  Grundmann, M., Ansell, S.W., Russell, S.J., Koch, M.A. and Vogel, J.C., 2007.  Genetic structure of the widespread and common Mediterranean bryophyte Pleurochaete squarrosa (Brid.) Lindb.(Pottiaceae)—evidence from nuclear and plastidic DNA sequence variation and allozymes. Mol Ecol, 16: 709-722.
[48]  Melosik, I., Odrzykoski, I.I., and Sliwinska, E. 2005. Delimitation of taxa of Sphagnum subsecundum sl (Musci, Sphagnaceae) based on multienzyme phenotype and cytological characters. Nova Hedwigia, 80: 397-412.
[49]  Salmaki, Y., Zarre, S., Jamzad, Z., and Matinizadeh, M. 2008. Circumscription of taxa in the chasmophilous Iranian Stachys species (Lamiaceae: sect. Fragilicaulis, subsect. Fragiles) inferred from isoenzyme variation patterns. Biochem Syst Ecol., 36: 907-914.
[50]  RM, S. and El-Ghobary, A.M. 2019. Molecular diversity in Earias insulana populations from different Egyptian governorates. Mol Divers, 4(3).
[51]  Polok, K. and Zielinski, R. 2008. Application of different DNA markers in studies on cryptic species of Aneura pinguis (Jungermanniopsida, Metzgeriales). Cryptogamie, Bryologie, 29: 3-21.
[52]  Hedenas, L. and Zare, H. 2010. The Euxinian-Hyrcanian endemic species Forsstroemia remotifolia (Lindb. ex Broth) Hedenas and Zare, comb nov (Neckeraceae, Bryophyta). Nova Hedwigia, 61-67.
[53]  Townsend, C. 1966. Mosses from Iran and Afghanistan. Transactions of the British Bryological Society, 5: 131-135.
Volume 7, Issue 2
December 2021
Pages 1-11
  • Receive Date: 15 August 2020
  • Revise Date: 20 October 2020
  • Accept Date: 15 December 2020
  • First Publish Date: 15 December 2020