Assessing genetic diversity of promising wheat (*Triticum aestivum* L.) lines using microsatellite markers linked with salinity tolerance

S. Sardouie-Nasab¹, Gh. Mohammadi-Nejad^{2*} and B. Nakhoda³

 Post Graduate Student of Plant Breeding, Razi university of Kermanshah, Kermanshah, Iran.
 Department of Agronomy and Plant Breeding, College of Agriculture, Shahid Bahonar University of Kerman, P.O. Box 76169-133, Kerman, Iran.
 Agricultural Biotechnology Research Institute of Iran.

*Corresponding author: Mohammadinejad@uk.ac.ir

Received: March 2013

Accepted: July 2013

Abstract

Narrow genetic variability may lead to genetic vulnerability of field crops against biotic and abiotic stresses which can cause yield reduction. In this study a set of 37 wheat microsatellite markers linked with identified QTLs for salinity tolerance were used for the assessment of genetic diversity for salinity in 30 promising lines of hexaploid bread wheat (Triticum aestivum L.). A total of 438 alleles were detected with an average allele number of 11.84 per locus using 37 microsatellite markers. The number of alleles per locus ranged from two to twenty, the maximum number of alleles was observed at Xgwm312. Gene diversity statistic for 37 microsatellite loci was varied from 0.66 to 0.94 and also polymorphic information content value was varied from 0.64 to 0.93 for Xgwm445 and Xgwm312 respectively. Result showed Xgwm312 SSR marker with the highest PIC value was distinguished as the best marker for genetic diversity analysis to improve of salinity tolerance. Obtained dendrogram by UPGMA method categorized genotypes in to 3 different groups, which had different reaction to salinity. A wide range of genomic diversity was observed among all the genotypes. Principal Coordinates Analysis (PCoA) also confirmed this pattern of genetic diversity, proving them can be use as the prime candidates in order to improve of salinity tolerance in breeding programs of wheat. The present study also indicates that microsatellite markers permit the fast and high throughput fingerprinting of numbers of genotypes from a germplasm collection in order to assess genetic diversity.

Key words: Genetic diversity, Microsatellite markers, Promising wheat lines, Principal coordinates analysis (PCoA)

Introduction

Estimation of genetic variation level among accessions is prerequisite for germplasm conservation and breeding programs (Fufa *et al.*, 2005). Knowledge of genetic diversity in a crop species is fundamental study for its improvement. Genetic studies using molecular markers in elite material of hexaploid bread wheat have been restricted both by the limited number of polymorphic markers and by the low level of variability within this selfpollinated species. A rich and diverse germplasm collection is the backbone of every successful crop improvement program (Manjarrez-Sandoval et al., 1997). The development in molecular genetics in wheat has been relatively slow, especially when compared to other crops such as maize, rice or tomatoes; this is mainly because of wheat's ploidy level, the size and complexity of its genome (Gupta et al., 1999). Assessing genetic diversity within a narrow genetic pool of novel breeding germplasm could make crop improvement more efficient by the directed accumulation of desired alleles. This is likely to speed up the breeding process and decrease the amount of plant material that needs to be screened in such experiments (Astarini et al., 2004). Efficient and quick screening of such genotypes speedup the process of varietal evaluation, thus molecular marker plays pivotal role in this regard (Asif et al., 2005). Identification based on morphological characters is time consuming and requires extensive field trials and evaluation (Astarini et al., 2004), while morphological differences may be epigenetic or genetic based characters (Tahir, 2001; Migdadi et al., 2004). In barley wheat, and microsatellite markers have been used for analysis of genetic diversity and identification of indigenous landraces and modern cultivars (Khanjari et al., 2007; Wang al., et 2007). Microsatellites are one of the most promising molecular-marker types able to identify or differentiate genotypes within a species (Prasad et al., 2000). Genetic variation in hexaploid wheat has been reported based on restriction

fragment length polymorphism (RFLP) (Vaccino et al., 1993), Random Amplified Polymorphic DNA (RAPD) (Dweikat et al., 1993), specific PCR primers for low copy sequences (Chen et al., 1994; Talbert et al., 1994), simple sequence repeats (SSRs) (Plaschke et al., 1995), and polyacrylamid gel electrophoresis (PAGE) of gliadins (Röder et al., 1995). SSR markers have been confirmed as an efficient tool for estimating genetic variation in wheat (Landjeva et al., 2006). Several authors reported that microsatellites are more variable than most of other molecular markers that are useful as tools for studying the genetic diversity of germplasm (Haile et al., 2012). Increases in salinity tolerance for the world's two staple crops, wheat and rice, are an important goal as the world's population is increasing more quickly than the area of agricultural land to support it (FAO, 2010). In bread wheat germplasm, salinity is considered a major factor in limiting plant growth and crop productivity (Rus et al., 2000). Several research have reported information on OTLs attributed to salinity tolerance. since present germplasm has high variation of salinity tolerance therefore the microsatellite markers linked with the identified QTLs for salinity tolerance were used to assess the genetic diversity of bread wheat lines.

Materials and Methods

Plant material and DNA extraction

Thirty diverse promising lines of bread wheat (Table 1) which had shown different reaction to salinity were used

diversity for genetic assessment. Experiment was carried out, at Shahid Bahonar university of Kerman (in the Southeast of Iran) in 2011. In order to screen the genotypes in saline conditions, under studied genetic materials had been grown in two field conditions of slain (10 dsm⁻¹) and normal (4 dsm⁻¹) in Yazd and Kerman. Scoring for salinity tolerance during screening with scores of 1 (no injury symptoms) and 9 (plants are dying or

dead) showed 30 extreme genotypes among 100 genotypes (Sardouie-Nasab *et al.*, 2013). Genomic DNA was extracted from fresh young leaf tissue according to Delaporta (Delaporta *et al.*, 1983), and DNA was quantified by spectrophotometer, by absorbance at 260/280nm. And the quality of DNA was further checked on 0.2% agarose gel.

Tab	Table 1. Pedigree of lines.					
Line	Salinity	Pedigree				
No.	reaction					
3	S	Cham4/Tam200//Del 483/3/Mirtos				
4	S	Cham4/Tam200//Del 483/3/Mirtos				
5	S	Alamoot*2/Kavir				
9	S	Alvand*2//Opata*2/Wulp				
11	S	Alvand*2/4/Kal/Bb//Cj"s"/3/Hork"s"				
20	S	Passarinho//Vee/Nac				
22	S	Guadalop/Falat				
25	S	Marvdasht/Owl				
26	S	TX62A4793/CB809/5/Gds/4/Anza/3/Pi/Nar//Hys/6/Passarinho/7/Alvand				
35	S	MV17/Alvd//Chamran/3/Pishtaz				
38	S	Mv17/Shiraz				
39	S	DH2-390-1563 F3Gds/4/Anza/3/Pi//Hys/5/1-6/6/Tajan/ 7/ Milan/				
40	Т	DH2-390-1563 F3Gds/4/Anza/3/Pi//Hys/5/1-6/6/Kauz*2/Opata//				
43	S	Kauz/Sorkhtokhm//Mahooti/ 3 /Bank"s"/Vee "s"				
46	S	Bloudan/3/Bb/7C*2//Y50E/Kal*3/4/KRL.14				
47	S	DH-line				
48	Т	Bloudan/3/Bb/7C*2//Y50E/Kal*3/4/Sholeh				
49	Т	Azd//Tob/Chb/3/Emu"s"/Tjb84/4/Bloudan/3/Bb/7c*2//Y50E/Kal*3				
51	Т	Alamoot//Opata*2/Wulp				
55	Т	1-72-92/Col.No.3617//Owl				
58	Т	Alvd//Aldan/Ias 58/3/1-60-3/5/Kal/Bb//Cj "s"/3/Hork"s"/4/Alvd//Aldan/Ias58				
59	Т	DH2-390-1563 F3Gds/4/Anza/3/Pi//Hys/5/1-6/6/Tajan/ 7/ Milan/				
67	Т	Kauz/Sorkhtokhm//Mahooti/3 /DH-209-1557 F3, Vee "s"/Nac//1-66-22				
73	Т	DH-line				
75	Т	DH-line				
83	Т	Cereal recearch collection, Accession no :2695				
87	Т	Cereal recearch collection, Accession no :2776				
89	Т	Cereal recearch collection, Accession no :2812				
94	Т	Cereal recearch collection, Accession no :2970				
97	Т	Cereal recearch collection, Accession no :3102				

S: Sensitive; T: Tolerant

SSR Assays: Thirty- seven polymorphic SSR markers were used for genetic diversity analysis (Table 2). SSR primers were obtained based on wheat physical maps (hattp://wheat.pw.usda.gov). PCR reactions were carried out in 10 1 reaction mixture containing 50ng/ 1 of genomic DNA, 0.25 1 of 50mM MgCl2, 0.25 1 of 10mM dNTPs, 1U of Tag polymerase (0.25 from 5U/l) and 0.5 1 of 5 mM primer in 1x reaction buffer. The amplification reactions were performed in the Eppendorf Master cycler with an initial denaturation for 3 minute at 94°^C, then 35 cycles: 1 minute denaturation at 94°C; 1 minute annealing at 55°^C; 2 minute extension at $72^{\circ C}$. Final extension was carried out at 72°C for 5 minutes. The PCR products were electrophoresed on 8% polyacrylamid gels containing 1x TBE (Tris Borate EDTA) for 2 hours.

Data analysis

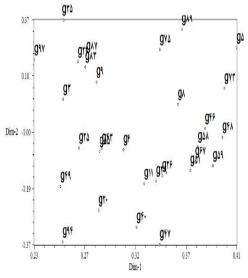
For each locus, SSR allelic composition was determined in the genotypes. SSRs data were scored by AlphaEaseFC4 software. A total of 37 informative SSR markers were scored with high quality. The program Power Marker version 3.25 (Anderson et al., 1993) was used to calculate allele frequencies, alleles per locus and observed heterozygosity Polymorphic for each locus. information content (PIC) values which indicating the ability to distinguish between genotypes for each primer combination, was calculated as heterozygosity expected for polymorphic bands with the following formula (Nei et al., 1983) using Power Marker version 3.25 (Anderson *et al.*, 1993).

$$\operatorname{PIC}_i = 1 - \sum_{j=1}^n p_{ij}^2$$

Where n is the total number of alleles detected for a locus of a marker and P_{ii} is the frequency of the jth allele for marker i, and summation extends over n alleles. Cluster analysis was performed according to the unweighted pair-group arithmetic method with average (UPGMA) with the Nei (Roussel et al., 2004) similarity index using Power Marker version 3.25 (Anderson et al., 1993). Principal coordinates analysis (PCoA) was performed on the matrix of Dice similarity coefficients (Dice 1945) using the modules DCENTER and EIGEN of the NTSYS-PC ver. 2.1 (Rohlf 2000) and the 2D plot was done using the MOD2D module of the program.

Results

Thirty- seven SSR markers that are linked with QTL identified for salinity tolerance were used to assess the genetic diversity of thirty wheat genotypes. Result showed a total of 438 alleles with an average of 11.84 alleles per locus over 37 SSR markers (Table 2). Roussel et al (2004) reported a total of 609 alleles with 41 microsatellite markers and Huang et al (2002) reported a total of 470 alleles with 24 SSRs. The average number of alleles per locus and mean gene diversity were 11.84 and 0.84, respectively. The average number of alleles per locus (7: range, 3-14) obtained in this study was less than the 18.1 alleles reported by Huang (Huang et al., 2002). Zhan et al (2002) obtained a total of 501 alleles with 90 SSRs in 43 wheat varieties. The number of alleles per locus ranged from two to twenty, the maximum number of alleles was observed at Xgwm312 (Table 2).


Table 2. Polymorphic information content (PIC), genome location, amplified alleles, and primer designation of 37 microsatellites.

Marker	Genome location	Major Allele Frequency	Allele NO.	Gene diversity	PIC	Size band range(bp)
xgwm10	2A	0.30	11	0.85	0.83	124-198
xcfa2043a	2A	0.20	13	0.89	0.88	176-243
xgwm445	2A	0.57	11	0.66	0.64	189-224
xbarc353.2	2A	0.33	13	0.84	0.83	183-233
xwmc261	2A 2A	0.30	7	0.81	0.78	90-116
xcfa2058	2A 2A	0.33	11	0.82	0.80	173-219
xgpw2206	2A 2A	0.17	16	0.91	0.80	211-309
xwmc109d	2A 2A	0.27	13	0.86	0.90	177-208
xgwm47.2	2A	0.27	19	0.90	0.89	101-167
xgwm294b	2A 2A	0.23	11	0.85	0.89	127-202
xcfa2121b	2A 2A	0.23	15	0.83	0.84	163-231
xgwm372	2A 2A	0.33	7	0.75	0.32	103-231
xgwm339	2A 2A	0.17	13	0.90	0.89	156-180
xgwm515	2A 2A	0.30	7	0.80	0.77	127-148
xwmc296	2A 2A	0.20	14	0.88	0.87	144-171
xgwm95	2A	0.27	14	0.88	0.87	105-142
xgwm249	2A	0.33	11	0.80	0.77	158-190
xgwm328	2A	0.40	7	0.77	0.75	167-193
xwmc17o	2A	0.23	14	0.89	0.88	215-236
xgwm312	2A	0.13	20	0.94	0.93	178-243
xwmc11	3A	0.30	15	0.86	0.84	143-185
xgwm674	3A	0.13	14	0.91	0.90	138-173
xgwm108	3B	0.23	14	0.89	0.88	130-174
xwmc326	3B	0.37	9	0.79	0.77	168-200
xwmc291	3B	0.33	11	0.81	0.79	216-246
xcfa2170	3B	0.20	13	0.90	0.89	98-150
xbarc84	3B	0.33	6	0.77	0.74	98-107
xbarc206	3B	0.23	13	0.88	0.87	201-269
xwmc687	3B	0.47	11	0.74	0.72	191-229
xwmc206	3B	0.37	13	0.81	0.80	190-254
xbarc48.4	4D	0.20	11	0.88	0.87	139-204
xgwm194	4D	0.23	10	0.86	0.84	124-157
xgwm609	4D	0.50	9	0.71	0.69	220-237
xgpw345	4D	0.20	8	0.85	0.84	185-215
xgwm624	4D	0.30	9	0.83	0.81	133-156
xbarc196	6D	0.33	11	0.82	0.80	162-195
xwmc416	6D	0.27	14	0.88	0.87	193-237
Mean		0.29	11.84	0.84	0.83	

The polymorphic information content value was varied from 0.64 to 0.93 for Xgwm445 and Xgwm312 respectively. The smallest size of amplified fragments by all the primers was varied between 90-309 bp. The lowest size was belonged to Xwmc261 (90bp) and the biggest was 309 bp for Xgpw2206. (Table 2). Gene diversity statistic for 37 microsatellite loci was varied from 0.66 to 0.94 for Xgwm445 and Xgwm312 respectively. PCoA showed that the first ten eigenvalues explained 44.25% of the cumulative variation (Table 3), which were then plotted to identify the diversity of the genotypes (Figure. 1). The dendrogram constructed on the basis of the similarity matrix showed that the wheat varieties were divided into three groups (Figure. 2). The 1st cluster contained line No. 25 while Lines No. 3, 4, 9, 11, 22, 26, 35, 47, 51 and 73 were grouped in the 2nd cluster. Other lines were grouped in the 3nd cluster. These three major cluster further partitioned in different subclusters. Genotypes that classified in same group were genetically close to each other. Three groups had different salinity tolerance.

 Table 3. Eigenvalue, proportion and cumulative variance of extract factors.

Cumulative	Proportion	Eigenvalue
10.55	10.55	3.16
14.86	4.31	1.29
19	4.13	1.24
22.93	3.93	1.18
26.7	3.76	1.13
30.31	3.61	1.08
33.92	3.6	1.08
37.41	3.49	1.04
40.88	3.47	1.04
44.25	3.36	1.01

Figure 1. Scattergram of principal coordinates (PCo) based on 37 wheat SSRs.

Discussion

Diversity analysis is important for deciphering genetic relationships including parentage and for the efficient management of germplasm and thereby, use in breeding of improved varieties (Al-Doss et al., 2011). Pyramiding crosses are suggested to increase the genetic diversity in the population (Siedler et al., 1994) and will be helpful in developing improved wheat cultivars. In the present study, we compared the genetic diversity of bread wheat lines using markers linked with OTL for salinity tolerance. Study of genetic diversity showed a high percentage of polymorphic loci and considerable genetic diversity among lines in the present study. Previous studies have shown that SSRs are highly polymorphic in wheat (Manifesto et al., 2001; Zhang et al., 2002). According to Bohn et al (1999) RFLP analysis polymorphisms revealed 4.7 per probe/enzyme combination among 81

European cultivars, whereas RAPDs primers generated only 18 polymorphisms/primer among 15 wheat cultivars. Our results indicate that microsatellite markers are much more informative than RFLPs and RAPDs in wheat. The PIC value refers to the relative value of each marker with respect to the amount of polymorphism exhibited (Igbal et al., 1997). In this research Xgwm312 SSR marker with the highest PIC value at this research was distinguished as the best marker for genetic diversity analysis (Table 2).

To better understand the relationships among these genotypes, in the present study, PCoA was carried out using the genetic similarities data set. Principal coordinate analysis showed that the first ten eigenvalues explained 44.25% of the cumulative variation, which were then plotted to identify the diversity of the genotypes, the low amount of cumulative variance can be due to dispersion of SSR markers in Genome A, B and D (Figure. 1). It demonstrated the genetic relationship between the lines' that had also been observed through dendrogram analysis (Figure. 2). A wide range of genetic diversity among all genotypes was observed. These findings clearly demonstrate the reliability, usefulness, and efficiency of SSRs in analyzing genomic diversity. Thus, it should be possible to establish a collection of highly polymorphic SSRs for genetic diversity studies, genomic potentially diversity estimates а valuable predicting source for selecting diverse parent genotypes for favorable heterotic combinations in a wheat improvement program that aims to broaden the genetic basis and progeny performance for complex traits such as yield or partial disease resistance (Bohn et al., 1999). Based on this study, markers linked with major QTLs of salinity tolerance will also allow estimating genetic similarity between different genotypes.

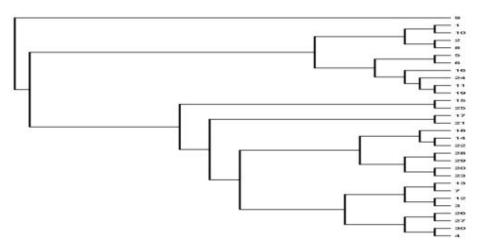


Figure 2. Dendrogram of 30 wheat genotypes showing the genetic similarity based on 438 alleles detected by 37 SSRs using Jaccard's coefficient and UPGMA cluster analysis.

The information about genetic similarity will be helpful to avoid any possibility of elite germplasm becoming genetically uniform. Efficiency and speed of plant breeding programs can be accelerated by (MAS) and permit persistent progress in the advancement of selected material. The information gathered here would be helpful in genomic mapping studies and for the development of wheat cultivars with wider and diverse genetic background to obtain improved crop productivity.

Conclusion

summary, data showed In our significant variation in microsatellite DNA polymorphisms among wheat varieties. This study by using wheat microsatellite markers revealed considerable amount of genetic diversity among thirty wheat varieties that can be used in selecting diverse parents in breeding program and in maintaining genetic variation in the germplasm. Obtained dendrogram by UPGMA method categorized lines in to 3 different groups, that had different reaction to salinity, since our goal was, select for salt tolerance, therefore these lines may have different genetic mechanism of salinity tolerance and it can be one promising approach for understanding of plant salt tolerance mechanisms during the course of breeding for salinity tolerance and it showed there are known some information markers in the study for salinity tolerance.

Acknowledgments

The authors acknowledge contributions made by Iranian center of excellence for abiotic stress in cereal crops in Shahid Bahonar University of Kerman-Iran.

References

- Al-Doss, A.A., Saleh, M, Moustafa, K.A., Elshafei, A.A, and Barakat, M.N .2011. Comparative analysis of diversity based on morpho-agronomic traits and molecular markers in durum wheat under heat stress. Afr J of Biotechnol 10:3671-3681.
- Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D. and Sorrells, M.E .1993. Optimizing parental selection for genetic linkage maps. Genome 36: 181-186.
- Asif, M., Rehman, M. and Zafer, Y .2005. DNA fingerprinting studies of some wheat (*Triticum aestivum* L.) genotypes using random amplified polymorphic DNA (RAPD) analysis. Pakistan J Bot, 37: 271-277.
- Astarini, A.I., Plummer, A.J., Lancaster, A.R. and Yan G .2004. Fingerprinting of cauliflower cultivars using RAPD markers. Aust J Agr Res, 55: 112-124.
- Bohn, M., Friedrich, U.H. and Melchinger, A.E .1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci, 39: 228–237.
- Botstein, D., White, R.L., Skolnick, M, and Davis, R.W .1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Amer j human genetics, 32: 314-331. PMID: 6247908.
- Bryan, G.J., Collins, A.J., Stephenson, P., Orry, A. *et al* .1997. Isolation and characterization of microsatellites from

hexaploid bread wheat. Theor Appl Genet, 94: 557-563.

- Chen, H.B., Martin, J.M., Lavin, M. and Talbert .1994. Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers. Sci. China. Ser. C Life Sci, 2006. 49: 218– 226.
- Delaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation: version II. Plant Mol Biol Rep. 4: 19-21.
- Devos, K.M., Bryan, Collins, A.J. and Gale, M.D. 1995. Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor Appl Genet, 90: 247-252.
- Dice, L.R .1945. Measures of the amount of ecologic association between species. Ecology 26:297–302 CrossRef.
- Dweikat, I., MacKenzie, S., Levy, M. and Ohm, H .1993. Pedigree assessment using RAPD–DGGE in cereal crop species. Theor Appl Genet, 83: 497– 505.
- FAO. 2010. FAO Land and Plant Nutrition Management Service. http://www.fao.org. 12.
- Fufa, H., Baenziger, P.S., Beecher, B.S., Dweikat, I., Graybosch, R.A. and Eskridge, K.M .2005. Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica 145:133-146.
- Gregorio, G.B., Senadhira, D., Mendoza,
 R.D .1997. Screening rice for salinity
 tolerance, IRRI Discussion paper Series
 No.22. International Rice Research
 Institute, Los Baños. Laguna,
 Philippines.
- Gupta, P.K., Varshney, R.K., Sharma, P.C. and Ramesh, B .1999. Molecular markers and their application in wheat breeding. Plant Breeding, 118: 369-390.
- Haile , J.K., Hammer , K., Badebo A., Nachit M.M., Genetic diversity assessment of Ethiopian tetraploid wheat

landraces and improved durum wheat varieties using microsatellites and markers linked with stem rust resistance.

- Huang, X.Q., Borner, A., Roder, M.S. and Ganal, M.W .2002. Assessing genetic diversity of wheat (*Triticum aestivum L.*) germplasm using microsatellite markers. Plant Breeding, 105: 699-707. PMID: 12582483.
- Iqbal, M.J., Aziz, N., Saeed, N.A., Zafar, Y. and Malik, K.A. 1997. Genetic diversity of some elite cotton varieties by RAPD analysis. Plant Breeding, 94:139-144.
- Joshi, C.P. and Nguyen, H.T .1993. RAPD (random amplified polymorphic DNA) analysis based intervarietal genetic relationships among hexaploid wheats. Plant Sci, 93: 95–103.
- Khanjari, S., Hammer K., Buerkert ,A. and Roder, M.S .2007. Molecular diversity of Omani wheat revealed by microsatellites: I. Tetraploid landraces. Genet Res Crop Evol, 54:1291–1300.
- Landjeva, S., Korzun, V. and Ganeva, G .2006. Evaluation of genetic diversity among Bulgarian winter wheat (*Triticum aestivum L.*) cultivars during the period 1925–2003 using microsatellites. Genet Res Crop Evol, 53: 1605–1614.
- Liu, K. and Muse, S.V .2005. Power Marker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129.
- Manifesto, M.M., Schlatter, A.R., Hopp, H.E., Suares, E.Y. and Dubcovsky, J .2001. Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci, 41: 682-690.
- Manjarrez-Sandoval, P., Carter, T.E., Webb, D.M. and Burton, J.W .1997. RFLP genetic similarity estimates and coefficient of parentage as genetic variance predictors for soybean yield. Crop Sci, 37: 698–703.

- Migdadi, H.M., Majid, A.T. and Masoud, S .2004. Genetic diversity in some Aegilops species in Jordan revealed using RAPD. PGR Newsletter, FAO-IPGRI, 139: 47-52.
- Mukhtar, MS., Rahman, M. and Zafar, Y .2002. Assessment of genetic diversity among wheat (*Triticum aestivum* L.) cultivars from a range of localities across Pakistan using random amplified polymorphic DNA (RAPD) analysis. Euphytica, 128: 417-425.
- Nei, M., Tajima, F. and Tateno, Y .1983. Accuracy of estimated phylogenetic trees from molecular data II. Gene frequency data. J Mol Evol, 19: 153-170.
- Plaschke, J., Ganal, M.W. and Röder, M.S .1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet, 91:1001–1007.
- Prasad, M., Varshney, R.K., Roy, J.K., Balyan, H.S. and Gupta, P.K .2000. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet, 100: 584–592.
- Röder, M.S., Plaschke, J., Konig, S.U., Börner, A. *et al* .1995. Abundance, variability and chromosomal location of microsatellites in wheat. Mole Gen Genom, 246: 327-333.
- Rohlf, F.J. 2000. NTSYS-pc: numerical taxonomy (Vitis vinifera L.) varieties using morphological data and multivariate analysis system. Exeter Software, and AFLP markers. Elect. J. Biotechnol., 6: 37-45. New York, N.Y.
- Roussel, V., Koenig, J., Beckert, M. and Balfourier, F .2004. Molecular diversity in French bread wheat accession related to temporal trend and breeding programs. Theor Appl Genet, 108:920.
- Rus, A.M., Rios, S., Olmos, E., Santa-Cruz, A. and Bolarin, M.C .2000. Longterm

culture modifies the salt responses of callus lines of salt-tolerant and salt-sensitive tomato species. J Plant Physiol 157: 413–420.

- Sardouie_Nasab, S., Mohammadinejad, G., Zebarjadi, A., Nakhoda, B., Mardi, M., Tabatabaie, M.T., Shrifi Sirchi, G.H., Amini, A. and Majidi Hervan, M. 2013.
 Response of Bread Wheat (Triticum aestivum L.) Lines to Salinty Stress.
 Seed and Plant Improvement J, 1(29): 81-102. (In Persian).
- Siedler, H., Messmer, M.M., Schachermayr, G.M., Winzeler, H. *et al* .1994. Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor Appl Genet, 88:994–1003.
- Tahir, M.S .2001. Reaction of different wheat (*Triticum aestivum* L.) genotypes in response to salt stress and genetic mapping of QTL for salt tolerance using AFLP markers. Ph.D. Thesis Univ, Keil, Germany.
- Talbert, L.E., Blake, N.K., Chee, P.W.,
 Blake, T.K. and Magyar, G.M .1994.
 Evaluation of "sequence-tagged-site"
 PCR products as molecular markers in wheat. Theor Appl Genet, 87: 789–794.
- Todorovska, E., Abumhadi, N., Kamenarova, K. *et al* .2005. Biotechnological approaches for cereal crops improvement Part II: use of molecular markers in cereal breeding. Biotechnol. & Biotechnol. Eq 19(3):91– 104.
- Vaccino, P., Accerbi, M. and Corbellini, M .1993. Cultivar identification in *T. aestivum* using highly polymorphic RFLP probes. Theor Appl Genet, 86: 833–836.
- Wang, H.Y., Wei, Y.M., Yan, Z.H. and Zheng, Y.L .2007. EST_SSR DNA polymorphism in durum wheat (Triticum durum L.) collections. J Appl Genet, 48:35–42.

Zhang, X.Y., Li, C.W., Wang, L.F., Wang, H.M. *et al* .2002. An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties. I. Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production. Theor Appl Genet, 106: 112-117. PMID: 12582878.

ارزیابی تنوع ژنتیکی لاینهای امید بخش گندم (.Triticum aestivum L) با استفاده از نشانگرهای ریزماهواره مرتبط با تحمل به شوری

سمیه ساردویی نسب'، قاسم محمدینژاد آ* و بابک ناخدا ۳

۱ - دانشجوی کارشناسی ارشد اصلاح نباتات دانشگاه رازی کرمانشاه ۲ - استادیار بخش زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه شهید باهنر کرمان ۳ - استادیار پژوهشکده بیوتکنولوژی کشاورزی کرج

*نویسنده مسئول: قاسم محمدینژاد Mohammadinejad@uk.ac.ir

چکیدہ

کاهش تنوع ژنتیکی منجر به آسیب پذیری ژنتیکی گیاهان زراعی در برابر تنش های زیستی و غیر زیستی و در نتیجه منجر به کاهش عملکرد می شود. در این مطالعه جهت ارزیابی تنوع ژنتیکی ۳۰ لاین امید بخش گندم هگزاپلوئید (Triticum L میانگین تعداد ۱۱/۸۴ آلل در هر لوکوس با استفاده از ۳۷ نشانگر ریزماهواره آشکار شدند. تعداد آلل برای هر مکان ژنی در محدوده ۲ تا ۲۰ بود که بیشترین تعداد آلل متعلق به جایگاه 22gmm312 بود. آماره تنوع ژنتیکی برای ۳۷ نشانگر ریزماهواره از ۴۶۶ تا ۲۴، متفاوت بود، همچنین محتوی اطلاعات چندشکلی از ۴۶۴، تا ۳۰/۱۰ به ترتیب برای نشانگرهای کلوسی ۲۶ تا ۲۰٫۰۰ متفاوت بود، همچنین محتوی اطلاعات چندشکلی از ۴۶۴، تا ۳۰٫۰۰ به ترتیب برای اطلاعات چند شکلی به عنوان بهترین نشانگر برای آنالیز تنوع ژنتیکی جهت بهبود تحمل به شوری شناسایی گردید. به شوری داشتند. تجزیه به مولفههای اصلی نیز این الگوی تنوع ژنتیکی جهت بهبود تحمل به شوری شناسایی گردید. به شوری داشتند. تجزیه به مولفههای اصلی نیز این الگوی تنوع ژنتیکی را تایید کرد و نشان داد که ژنوتیپهای مورد برسی می توانند به عنوان نهاده ای رای بهبود تحمل به شوری در برنامه های اصلاحی گردید. گیرند. مطالعه حاضر همچنین نشان داد که نشانگرهای ریزماهواره پالایی در انگستنگاری تا ۲۰٫۰۲ به ترتیب برای منظور ارزیابی تنوع ژنتیکی دارند که نشانگرهای ریزماهواره پتانسیل بالایی در انگشتنگاری تعداد زیادی ژنوتیپ های مورد منظور ارزیابی تنوع ژنتیکی دارند.

کلمات کلیدی: تجزیه به مولفههای اصلی (PCoA)، تنوع ژنتیکی، لاینهای امید بخش، نشانگرهای ریزماهواره.