Journal of Plant Molecular Breeding (JPMB) Vol.1/No.2/ October 2013/ 85-98

Research review paper

Molecular genetic control of leaf lifespan in plants - A review

R. Shirzadian-khorramabad^{1,2*}

1. Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands.

2. Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan,

P.O. Box 41635-1314, Rasht, Iran.

* Email address: R.shirzadian@gmail.com

Received: April 2013

Accepted: August 2013

Abstract

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morphology and physiology, cell metabolism and structure, and gene transcription. In this regard, comprehensive expression analysis of senescence-associated genes (*SAGs*) and the identification of leaf senescence related mutants has revealed that leaf senescence is a complex genetically controlled program. In this review, we present important findings about the molecular genetic mechanisms underlying leaf senescence in various plants with a main focus on the model plant *Arabidopsis thaliana*. Functional analysis of leaf senescence mutants has provided new insights into the key processes that regulate the onset and progression of leaf senescence, thus allowing categorization of the various regulatory factors into several signalling pathways.

Keywords: Leaf senescence, longevity, Arabidopsis.

Introduction

Plant leaf senescence, as the last part of leaf development, is a type of programmed cell death (PCD) that takes place through an active and highly regulated process. The phenotype of leaf senescence is accompanied by a wide range of remarkable sequential changes at the level of cellular physiology, structure, metabolism and gene expression (Lim and Nam, 2005; Buchanan-Wollaston *et al.*, 2005). It

can also be modulated by various external internal and factors participating modulating in the senescence process. Internal factors mainly refer to the developmental ageing processes, reproduction and changes in levels of plant growth regulators (Schippers et al., 2007). While external elements include darkness. temperature, mineral deficiency, drought, oxidative stress and pathogen attack (Navabpour et al.,

2003; Pontier et al., 1999; Quirino et al., 1999). Therefore, incorporation of age dependent signals together with those factors decides the initiation time of leaf senescence and its succession rate (Lim et al., 2007). One of the important consequences of leaf cells degeneration is effective remobilization of transportable nutrients into developing tissues in aging plants (Lim et al., 2007) (Figure 1). In fact, leaf senescence marked by such a massive recycling of nutrients is essential for ensuring survivability of a species (Schippers et al., 2007). Hence, leaf senescence contributes to plant fitness and ensures survival of species in the following season by optimal production of offspring.

Figure 1. Representation of a senescing *Arabidopsis* plant showing the leaves at various ages and senescence levels. As leaves senesce, nutrients are relocated to other parts of the plants such as developing leaves and flowers.

Leaf senescence is a genetically controlled program

Initiation of developmental leaf senescence is accomplished by time-

specific action of age-related genes (Schippers et al., 2007). As expected, the gene expression profiles of ageing leaves are distinctively different from young leaves. Many of the genes expressed in green leaves are downregulated (senescence genes, SDGs), while other genes are up-regulated (senescence-associated genes, SAGs) (Gepstein et al., 2003). Towards identification of the genes involved in leaf senescence, the three main approaches significantly improve our understanding concerning molecular genetic regulation of leaf senescence. The first approach includes comprehensive transcriptional profiling of SAGs. The second involves the characterization of mutants with altered regulation of leaf senescence. The third one refers to analysis of quantitative trait loci (QTLs) for developmental /stress-induced leaf senescence in plants (Luquez et al., 2006).

Identification of the genes that are differentially expressed before and during the process of leaf senescence has received considerable attention over the last decade. In general, senescence down-regulated genes (SDGs) are involved in anabolic activities, while up-regulated genes (SAGs) are mostly involved in catabolic functions (Kim et al., 2007). Buchanan-Wollaston et al. (2005) identified more than 800 SAGs demonstrating reproducible increase in transcript abundance during developmental ageing in Arabidopsis leaves using. Liu et al. (2008) identified 815 expressed sequence tags (ESTs) upregulated genes at the onset of flag leaf senescence in rice. Among the

identified SAGs are those encoding enzymes for the implementation of the senescence syndrome (Chlorophyll and Lipid degradation, nitrogen remobilization) (Dangl et al., 2000), various proteases (Thompson and Vierstra, 2005), transcription factors (Buchanan-Wollaston et al., 2005) and receptors for senescence perception signals (Guo et al., 2004). Therefore, global expression analysis provides important clues for understanding the metabolic and regulatory systems associated with the leaf senescence syndromes.

To gain more insights into the mechanism(s) of leaf senescence and longevity, functional analysis of regulatory genes is necessary. One approach is to directly study mutants in which we categorize and discuss the known senescence mutants based on their probable timely involvement in leaf senescence process.

Mutants involved in perception and transduction of senescence signals *Transcription factor genes*

Various transcription factor (TF) genes show enhanced expression in senescing leaves. Ninety-six up-regulated TF genes were identified in ageing leaves of Arabidopsis (Buchanan-Wollaston et al., 2005). Guo et al. (2004) identified 134 genes that encode various TFs categorized in 20 different gene families in Arabidopsis. NAC and WRKY proteins constitute a big fraction of the identified senescence-related TFs. Involvement of NAC TFs in leaf senescence was further illustrated in a knockout line carrying a T-DNA

AtNAP knockout insertion in (At1g69490), which considerably delayed leaf senescence in Arabidopsis (Guo and Gan, 2006). Another ABAresponsive NAC TF has been recently identified and termed VND-INTERACTING 2 (VIN2), which is regulated by developmental aging leaf processes, in association with saltinduced stress in Arabidopsis (Yang, et al., 2011). Moreover, NAC factor ORE1 (also called ANAC092 and AtNAC2) is another crucial TF which triggers early senescence, by regulation of various SAGs in a downstream gene network, when enhanced its expression in Arabidopsis thaliana. Promoterreporter (GUS) studies showed that leaf and flower senescence induced by salt stress also regulate ORE1 expression levels (Rauf et al., 2013; Balazadeh et al., 2010). In addition to NAC TFs, a number of WRKY family TFs play vital Arabidopsis functions in leaf regulation. senescence Especially, AtWRKY53 and WRKY6 have been associated with leaf senescence. A T-DNA insertion in WRKY53 induced retarded leaf senescence event in transgenic lines (Miao et al., 2004). It has been recently suggested that three WRKY TFs WRKY70 and WRKY54, as co-operated negative regulators of leaf senescence, as well as WRKY53 might contribute in a regulatory system which incorporate internal and environmental signals, perhaps through interaction with WRKY30, to adjust the initiation and succession of leaf senescence (Besseau et al., 2012).

Signalling molecules

Senescence is associated with upregulation of various genes that are potentially implicated in signal perception and transduction. Receptor kinases are probably involved in perception and transduction of senescence signals through protein phosphorylation.

A senescence-associated receptor-like kinase (SARK) isolated from bean leaves has been exclusively expressed during senescence. Interestingly, light and cytokinin treatments delayed the induction of SARK transcript, while darkness and ethylene accelerated this process (Hajouj et al., 2000). Another possible signalling pathway involved in leaf senescence is correlated with the function of the MAPKs (Mitogenactivated protein kinases) (Hirt, 1997). High levels of ZmMPK5 transcripts were detected in senescing leaves of maize suggesting that ZmMPK5 plays a role in the coordinated process of leaf senescence (Berberich et al., 1999).

Developmental leaf senescence regulatory genes

Arabidopsis leaves have a definite lifespan and eventually initiate to senesce even under perfect growth circumstances (Jing *et al.*, 2002). Hence, the leaf senescence initiation is mainly the consequence of age-related changes (ARCs). There might be a cellular mechanism(s) that measures the age of a cell, tissue, organ or whole body for initiation of leaf senescence (Lim *et al.*, 2003). This poses several questions, for instance, what does control the leaf longevity and how is

developmental age distinguished to initiate the senescence program. A number of genetic loci were identified through the interaction between agerelated changes and ethylene action which are based on the fact that certain ARCs have occurred in the leaf before initiation of senescence (Shirzadian-Khorramabad et al., 2010b, Jing et al., The observations 2002). can be summarized into the senescence window conception, which proposes three phases in the leaf development program based on the interaction age-related changes between and ethylene action (Jing et al., 2003). Mutations in genes acting at the three phases may result in predictable senescence phenotypes. This prediction was experimentally confirmed by the isolation and characterization of *onset* of leaf death (old) mutants (Shirzadian-Khorramabad et al., 2010a; Shirzadian-Khorramabad et al., 2010b; Shirzadian-Khorramabad et al., 2008, Jing et al., 2005; Jing et al., 2002). For instance, genes functioning at the first phase are the master regulators that incorporate the information from diverse sources determine when and and how senescence initiates. The onset of leaf death 101 (old101) mutant delayed of leaf senescence initiation and prolonged leaf longevity in both age-dependent ethyleneand leaf senescence manners (Shirzadian-Khorramabad et al., 2010b; Shirzadian-Khorramabad al., 2008). et Consequently, the first stage of ethylene windows senescence (Never senescence) may extend and shift further in old101 plants (ShirzadianKhorramabad et al., 2008; Sturre et al., 2009). The genes working at the second phase presumably are those that govern the duration and speed of senescence. It was suggested that OLD1, OLD2 and OLD3 genes might regulate the first transition from the never-senescence phase to the ethylene-dependent phase (Shirzadian-Khorramabad et al., 2010b; Jing et al., 2002). At the last stage, there is "a point of no return" for senescence and cell death. Since old101 plants normally start senescing later, it suggests that the switch to the third phase is delayed in *old101* plants (Shirzadian Khorramabad et al., 2008). Metabolic rate and cellular redox balance play important roles in the regulation of developmental leaf aging. Identification of the ore4-1 mutation supported involvement of metabolic rate and cellular redox balance in leaf senescence initiation (Woo et al., 2002). The late senescence phenotype of ore4-1 plants is due to a decrease in metabolic rate, indicating that energy expenditure is a major factor in of leaf regulation senescence. Moreover, it was also suggested that the reduced metabolic rate results in a decrease in the generation of reactive oxygen species and therefore prolongs lifespan as found in the ore4-1 Arabidopsis mutants (Woo et al., 2002). In old5 plants, increased oxidative stress is associated with alteration in the metabolite profile (Schippers et al., 2009). Thus, the damage generated by ROS can induce early leaf senescence onset, which is consistent with the 'freeradical' theory of ageing (Harman, 1956).

Mutants involved in hormone signalling

Leaf senescence could be modified by endogenous developmental factors such as phytohormones with cytokinin and ethylene having the most obvious effects on delaying or inducing leaf senescence. Here we utilize the availability of various mutants in the hormonal signalling pathways of cytokinin and ethylene to review how these hormones are involved in the regulation of the leaf senescence process.

Cytokinin

The endogenous cytokinin level drops during leaf senescence, and either exogenous application or endogenous enhancement of cytokinin content delays senescence (McCabe et al., 2001; Gan and Amasino, 1995). Molecular analysis at genomic scale revealed that genes involved in cytokinin biosynthesis and signalling, such as isopentenvl-transferase (*IPT*) gene is down-regulated. In contrast, the genes for cytokinin degradation and cytokinin oxidase, are up-regulated during leaf senescence (Buchanan-Wollaston et al., 2005). The gain-offunction Arabidopsis mutant, ore12-1, which has a missense mutation in Arabidopsis Histidine Kinase 3 (AHK3) exhibited a delay in leaf gene, senescence (Kim et al., 2006). Interestingly, the loss-of-function *ahk3* mutant resulted in early senescence during dark-induced senescence suggesting that the effects of cytokinins in retardation of leaf senescence might be through stimulation of the leaf photosynthetic activity (Schippers et al., 2007). Moreover, it was shown that the delay of senescence by cytokinin is mediated by an extracellular invertase (Cin1). Inhibition of extracellular invertase activity blocked cytokinin mediated retardation of leaf senescence (Balibrea Lara et al., 2004). The results carbohydrate further suggest that partitioning in association with extracellular invertase activity might be involved in cytokinin-mediated delay of leaf senescence.

Ethylene

Ethylene has been considered as an essential hormone in regulation of the leaf senescence initiation (Jing et al., 2002). Nine percent of the genes that are up-regulated during senescence are at least twofold reduced in the ethylene insensitive mutant 2 (ein2) (Buchanan-Wollaston et al., 2005). Ethylene insensitive Arabidopsis mutants etr1-1 and ein2/ore3 (Grbić and Bleecker, 1995) show increased leaf longevity. Both ctrl (constitutive triple response and ethylene-insensitive *etr1-1* 1) mutant Arabidopsis plants grown in the continuous presence of exogenous ethylene did not accelerate senescence (Grbić and Bleecker, 1995). These results suggest that ethylene plays an important role in the dynamic coordination of the timely transition of a leaf to the senescence state (Jing et al., 2003; Grbic and Bleecker, 1995). Using an ethylene-induced senescence screen method, several onset of leaf death (old) mutants were identified through the interaction between leaf age and

ethylene (Shirzadian-Khorramabad et al., 2010b; Jing et al., 2005; Jing et al., 2002) This suggests that multiple genetic loci are required to regulate the action of ethylene in leaf senescence. Therefore, it could be concluded that ethylene endogenous levels are important for the initiation of senescence, but ARCs limit its function within a specific age range (Shirzadian-Khorramabad et al., 2008).

Mutants involved in macromolecular degradation

Protein degradation

Degradation of proteins into amino acids and their subsequent remobilisation to developing organs in plants are considered as the essential steps during the leaf senescence. Up to 70% of the leaf proteins that are located within chloroplasts are degraded and remobilised during leaf senescence process. Currently a large set of genes involved in protein turnover, which are activated during plant senescence has been identified. Those include various proteases such as cysteine proteases, cathepsin B-like cysteine proteases, aspartic proteases as well as vacuolar processing enzymes and components of pathway the novel autophagic (Thompson and Vierstra, 2005: Gepstein et al., 2003). ClpD/ERD1 and ClpC1 proteases which are localized in chloroplast stroma may play the major regulatory roles in control of protein turnover in senescing leaves. Upregulation of these two proteases might reflect the need for the recruitment of unfolded proteins for degradation by Clp proteases during senescence (Lin

and Wu, 2004). The housekeeping Clp proteases are involved in maintenance of appropriate stoichiometry and elimination of damages or mistargeted proteins (Adam and Clarke, 2002). An interesting class of genes that are up regulated during senescence encodes autophagy-related proteins (Buchanan-Wollaston *et al.*, 2005).

Autophagy (self-eating), another protein cell degradation system in plant is an senescing cells, universal mechanism in eukaryotic cells involving vacuolar bulk degradation of in cytoplasmic components to recycle needed nutrients, degrade damaged or toxic components, or to reclaim cellular materials (Bassham, 2007). Three *Arabidopsis* autophagy proteins AtAPG7, AtAPG9 and AtATG18a were found to have a function in the initiation of leaf senescence. Disruption of Arabidopsis genes AtAPG7 and AtAPG9 promoted leaf senescence, which implies that autophagy is necessary to stabilize cellular viability especially during situations that require substantial nutrient recycling (Hanaoka et al., 2002).

Chlorophyll degradation

Leaf senescence as the final step of leaf development is accompanied by leaf yellowing, which is a good indicator of senescence caused by chlorophyll (Chl) degradation (Matile, 2000). Chls in chloroplast thylakoid membranes are degraded to non-fluorescent Chl catabolites following their accumulations in the vacuoles of senescing cells (Hörtensteiner, 2009). Chls in higher plants consist of Chl b

and Chl *a*, which is the most important compound of the photosystem I (PSI) and photosystem II (PSII) reaction centre complexes. Degradation of Chl a and Chl b has some overlapping steps. First. Chl a is converted into chlorophyllide а (Chlide a)by chlorophyllase, whose activity is present in the inner envelope chloroplast membranes (Matile et al., 2000). Chlide a, which considers as the last green compound in the chlorophyll breakdown pathway, is then converted another compound into termed pheophorbide *a* (Pheide *a*). Pheide *a* is subsequently converted into red Chl catabolite (RCC) by oxygenase (PAO). RCC is then catabolised into primary fluorescent chlorophyll catabolites by RCC reductase (RCCR) (Hörtensteiner, 2009). Degradation of Chl b starts with Chl b conversion into Chl a following the Chl *a*-degrading pathway as already described in the above three phases. Regarding diverse steps of Chl catabolism, several "stay green" or "non-yellowing" mutants were isolated from various plants, and their subsequent characterizations opened new insights into the genetic and biochemical mechanisms of Chl breakdown during leaf senescence (Hörtensteiner, 2009). Some stay green mutants can photosynthesize longer time and might therefore be expected to give a higher yield; they can be defined as 'functional stay green' mutants (Shirzadian-Khorramabad et al., 2010b), which have the potential to enhance plant productivity.

Identification of NON-YELLOW COLORING1 *NYC1* from rice (Kusaba

et al., 2007) supported the assumption that reduction of Chl b to Chl a within the Chl-protein complexes of the photosystems (PSI and PSII) is prerequisite for Chl degradation, leading to the destabilization of these Chl-protein complexes (Hörtensteiner, 2009). The stay green mutants nycl preserves granal structure during senescence, suggesting that degradation of LHCII (Light-harvesting complexes is required for of II) proper degeneration of the thylakoid membrane during senescence.

Another group of stay-green mutants having a defection in the gene called *SID* (*senescence-induced degradation*). *SID* orthologous genes are annotated in Rice SGR (STAY-GREEN)] (Jiang et al. 2007) and in Arabidopsis as [SGN/NYE1(STAYGREEN/NONYELLO WING)] (Ren et al. 2007).

Lipid degradation

Degradation of membrane lipids is not just a symptom of the senescence process, but it is involved in regulation age-dependent of senescence progression (He and Gan, 2002). The membrane degradation is considered as a significant decline in amount of the phospholipids and relative enhancement of sterols and free fatty acids in the cell membrane (Manoharan et al., 1990) that eventually leads to the loss of membrane structural integrity (Thompson et al., 1998). Up-regulation of several genes involved in degradation of membrane lipids has been reported during senescence or after exposure to stress (Bargmann and Munnik, 2006). Plant cells contain various

phospholipid-degrading enzymes such as D, C and A types of phospholipases and nonspecific acyl hydrolases, and lipoxygenases (Thompson et al., 1998; Fan et al., 1997). The significance of these enzymes in leaf senescence was investigated through functional analysis of *PLDa*, acyl hydrolase (*SAG101*) and lipases. Silencing of SAG101, which encodes an acyl hydrolase, leads to retarded leaf senescence in Arabidopsis (He and Gan, 2002). Ectopic expression of SAG101 accelerated leaf senescence in young leaves. SAG101 serves as a facilitating membrane breakdown in senescing leaf cells. Regulatory role of hormone-induced PLDα in leaf senescence were demonstrated in $PLD\alpha$ -antisense transgenic plants which showed delayed senescence (Fan et al., 1997), demonstrating that PLDa is an essential mediator in phytohormonepromoted leaf senescence.

Nutrient remobilisation

During the leaf senescence, the breakdown of leaf cell components is initiated at the chloroplast, where most of the nitrogen and other nutrients are stored. The massive breakdown and remobilisation is accompanied by upregulation of SAGs encoding for hydrolytic enzymes, which are responsible for salvage of various macromolecules such as proteins, nucleic acids, polysaccharides and lipids (Buchanan-Wollaston et al.. 2005). Moreover, genes encoding amino acid permeases and peptide transporters are also up-regulated to facilitate export from the senescing leaves (Buchanan-Wollaston et al., 2005). Leaf senescence is associated with a drop in levels of various elements among which nitrogen was found to be the major recycled element (Himelblau and Amasino, 2001). In various plant species, remobilisation of nitrogen mostly occurs in the form of glutamine and asparagine (Finnemann and Schjoerring, 2000). During the senescence process, concentration of glutamine and asparagine increase in the phloem (Herrera-Rodriguez et al. 2006). implying central functions for glutamine asparagine in providing N and accessible for remobilisation from the dying leaves. Several approaches have identified many nitrogen transporter genes encoding for different amino acid transporters in seed and senescing leaves (Masclaux-Daubresse et al., 2008). Additionally, positive а correlation between the increase in proteolytic activity and the expression of three groups of senescence marker encoding glutamine genes for synthetase (GS)and glutamate dehydrogenase (GDH) have been reported (Terce-Laforgue et al., 2004). Overall, these results indicate that nutrient remobilisation during plant senescence is a complex process in which many regulatory systems play a role.

Perspectives

Leaf senescence is a complex genetically regulated program that contributes to plant fitness through remobilisation of the nutrients from ageing leaves to the developing organs. Understanding the various aspects of the regulatory mechanisms underlying this complex process has been an important task over the last decade. However, the entire picture of leaf senescence regulation remains obscure in biology. Therefore, new approaches are required to let us move ahead towards understanding all features of the leaf senescence regulation. In this respect, identification and functional characterization of novel senescence mutants can notably contribute towards this objective.

References

- Adam, Z. and Clarke, A.K. 2002. Cutting edge of chloroplast proteolysis. *Trends Plant Sci.*, 17: 451-456.
- Balazadeh, S., Siddiqui, H., Allu, A.D., Matallana-Ramirez, L.P., Caldana C., Mehrni,a M., Zanor, M.I., Köhler, B. and Mueller-Roeber, B. 2010. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during saltpromoted senescence. *Plant* J. 62: 250-64.
- Balibrea Lara, M.E.B., Garcia, M.C.G., Fatima, T., Ehness, R., Lee, T.K., Proels, R., Tanner, W. and Roitsch, T. 2004. Extracellular invertase is an essential component of cytokininmediated delay of senescence. *Plant Cell*, 16: 1276-1287.
- Bargmann, B.O.R. and Munnik, T. 2006.
 The role of phospholipase D in plant stress responses. *Curr. Opin. Plant Biol.*, 9: 515-522.
- Bassham, D.C. 2007. Plant autophagy: more than a starvation response. *Curr. Opin. Plant Biol.*, **10**: 587-593.
- Berberich, T., Sano, H. and Kusano, T. 1999. Involvement of a MAP kinase, ZmMPK5, in senescence and recovery from low-temperature stress in maize. *Mol. Gen. Genet.*, 262: 534-542.

- Besseau, S., Li, J. and Palva, T. 2012. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in *Arabidopsis thaliana*. J Exp Bot. 63: 2667-79.
- Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., Ishizaki, K. and Leaver, C.J. 2005. Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in *Arabidopsis. Plant J.*, 42: 567-585.
- Dangl, J., Dietrich, R. and Thomas, H.
 2000. Senescence and programmed cell death. In Biochemistry and Molecular Biology of Plants (Buchanan, B., Gruissemand, W. and Jones, R., eds).
 Rockville, Maryland: American Society of Plant Physiologists, 1044-1100.
- Fan, L., Zheng, S. and Wang, X. 1997. Antisense suppression of phospholipase D retards abscisic acid- and ethylenepromoted senescence of postharvest *Arabidopsis* leaves. *Plant Cell*, 9: 2183-2196.
- Finnemann, J. and Schjoerring, J.K. 2000. Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 protein interaction. *Plant J.*, 24:171-181.
- Gan, S. and Amasino, R.M. 1995. Inhibition of leaf senescence by autoregulated production of cytokinin. *Science*, 270: 1986-1988.
- Gepstein, S., Sabehi, G., Carp, M.J., Hajouj, T., Nesher, M.F., Yariv, I., Dor, C. and Bassani, M. 2003. Large-scale identification of leaf senescenceassociated genes. *Plant J.*, 36: 629-642.
- Grbić, V. and Bleecker, A.B. 1995. Ethylene regulates the timing of leaf senescence in *Arabidopsis*. *Plant J.*, 8: 595-602.

- Guo, Y. and Gan, S. 2006. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. *Plant J.*, 46: 601-612.
- Guo, Y., Cai, Z. and Gan, S. 2004. Transcriptome of *Arabidopsis* leaf senescence. *Plant Cell Environ.*, 27: 521-549.
- Hajouj, T., Michelis, R. and Gepstein, S. 2000. Cloning and characterization of a receptor-like protein kinase gene associated with senescence. *Plant Physiol.*, 124: 1305-1314.
- Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S. and Ohsumi, Y. 2002. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an *Arabidopsis* autophagy gene. *Plant Physiol.*, 129: 1181-1193.
- Harman, D. 1956. Ageing: a theory based on free radical and radiation chemistry. *J. Gerontol.*, 2: 298-300.
- He, Y. and Gan, S. 2002. A gene encoding an acyl hydrolase is involved in leaf senescence in *Arabidopsis*. *Plant Cell*, 14: 805-815.
- Herrera-Rodriguez, M.B., Maldonado, J.M., Perez-Vicente, R. 2006. Role of asparagine and asparagine synthetase genes in sunflower (Helianthus annuus) germination and natural senescence. J. Plant Physiol., 163: 1061-1070.
- Himelblau, E. and Amasino, R.M. 2001. Nutrients mobilized from leaves of *Arabidopsis thaliana* during leaf senescence. J. Plant Physiol., 158: 1317-1323.
- Hirt, H. 1997. Multiple roles of MAP kinases in plant signal transduction. *Trends Plant Sci.*, 2: 11-15.
- Hörtensteiner, S. 2009. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence, *Trends Plant Sci.*, 14: 155-162.

- Jiang, H., Li, M., Liang, N., Yan, H., Wei, Y., Xu, X., Liu, J., Xu, Z., Chen, F. and Wu, G. 2007. Molecular cloning and function analysis of the *stay green* gene in rice. *Plant J.*, 52: 197-209.
- Jing, H.C., Hille, J. and Dijkwel, P.P. 2003. Ageing in plants: conserved strategies and novel pathways. *Plant Biol.*, 5: 455-464.
- Jing, H.C., Schippers, J.H.M., Hille, J. and Dijkwel, P.P. 2005. Ethylene-induced leaf senescence depends on age-related changes and *OLD* genes in *Arabidopsis*. *J. Exp. Bot.*, 546: 2915-2923.
- Jing, H.C., Sturre, M.J., Hille, J. and Dijkwel, P.P. 2002. *Arabidopsis* onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. *Plant J.*, 32: 51-63.
- Kim, H.J., Lim, P.O. and Nam, H.G. 2007. Molecular regulation of leaf senescence. In: Senescence processes in plants-Gan S, ed. Oxford: Blackwell Publishing. 231-255.
- Kim, H.J., Ryu, H., Hong, S.H., Woo, H.R., Lim, P.O., Lee, I.C., Sheen, J., Nam, H.G. and Hwang, I. 2006. Cytokininmediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in *Arabidopsis*. *Proc. Natl. Acad. Sci. USA*, 103: 814-819.
- Kusaba, M., Ito, H., Morita, R., Iida, S., Sato, Y., Fujimoto, M., Kawasaki, S., Tanaka, R., Hirochika, H., Nishimura, M. and Tanaka, A. 2007. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. *Plant Cell*, 19:1362-1375.
- Lim, P.O. and Nam, H.G. 2005. The molecular and genetic control of leaf senescence and longevity in *Arabidopsis. Curr. Top. Dev. Biol.*, 67: 49-83.

- Lim, P.O., Kim, H.J. and Nam, H.G. 2007. Leaf senescence. *Ann. Rev. Plant Biol.*, 58: 115-136.
- Lim, P.O., Woo, H.R. and Nam, H.G. 2003. Molecular genetics of leaf senescence in *Arabidopsis. Trends Plant Sci.*, 8: 272-278.
- Lin, J.F. and Wu, S.H. 2004. Molecular events in senescing *Arabidopsis* leaves. *Plant J.*, 39: 612-628.
- Liu, L., Zhou, Y., Zhou, G., Ye, R., Zhao,
 L., Li, Z. and Lin, Y. 2008.
 Identification of early senescenceassociated genes in rice flag leaves. *Plant Mol. Biol.*, 67: 37-55.
- Luquez, V.M.C., Sasal, Y., Medrano, M., Martin, M.I., Mujica, M. and Guiame, J.J. 2006. Quantitative trait loci analysis of leaf and plant longevity in Arabidopsis thaliana. *J. Exp. Bot.*, 57: 1363–1372.
- Manoharan, K., Prasad, R. and Mukherjee, S. 1990. Senescence-related lipid change in callus cultures of *Datura innoxia*. *Phytochem.*, 29: 2529-2531.
- Masclaux-Daubresse, C., Reisdorf-Cren, M. and Orsel, M. 2008. Leaf nitrogen remobilisation for plant development and grain filling, *Plant Biol.*, 10: 23-36.
- Matile, P. (2000). Biochemistry of Indian summer: Physiology of autumnal leaf coloration. *Exp. Gerontol.*, 35: 145-158.
- McCabe, M.S., Garratt, L.C., Schepers, F., Jordi, W.J., Stoopen, G.M., Davelaar, E., van Rhijn, J.H., Power, J.B. and Davey, M.R. 2001. Effects of P-SAG12:IPT gene expression on development and senescence in transgenic lettuce. *Plant Physiol.*, 127: 505-516.
- Miao, Y., Laun, T., Zimmermann, P. and Zentgraf, U. 2004. Targets of the WRKY53 transcription factor and its role during leaf senescence in *Arabidopsis. Plant Mol. Biol.*, 55: 853-867.

- Navabpour, S., Morris, K., Allen, R., Harrison, E., Mackerness, S. and Buchanan-Wollaston, V. 2003.
 Expression of senescence-enhanced genes in response to oxidative stress. J. Exp. Bot., 54: 2285-2292.
- Pontier, D., Gan, S., Amasino, R.M., Roby, D. and Lam, E. 1999. Markers for hypersensitive response and senescence show distinct patterns of expression. *Plant Mol. Biol.*, 39: 1243-1255.
- Quirino, B.F., Normanly, J. and Amasino, R.M. 1999. Diverse range of gene activity during *Arabidopsis thaliana* leaf senescence includes pathogenindependent induction of defence-related genes. *Plant Mol. Biol.*, 40: 267-278.
- Rauf, M., Arif, M., Dortay, H., Matallana-Ramírez, L.P., Waters, M.T., Gil Nam,
 H., Lim, P.O., Mueller-Roeber, B.,
 Balazadeh, S. 2013. ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. *EMBO Rep.* 14: 382-8.
- Ren, G., An, K., Liao, Y., Zhou, X., Cao, Y., Zhao, H., Ge, X. and Kuai, B. 2007. Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in *Arabidopsis. Plant Physiol.*, 144: 1429-1441.
- salt-promoted senescence. *Plant* J. 62: 250-64.
- Schippers, H.M.J., Nunes-Nesi, A., Apetrei, R., Hille, J., Fernie, A.R. and Dijkwel, P.P. 2009. The Arabidopsis onset of leaf death5 Mutation of Quinolinate Synthase Affects Nicotinamide Adenine Dinucleotide Biosynthesis and Causes Early Ageing, *Plant Cell*, 20: 2909– 2925.
- Schippers, J.H.M., Jing, H.C., Hille, J. and Dijkwel, P.P. 2007. Developmental and hormonal control of leaf senescence. In: Senescence processes in plants, Vol. 26,

Gan, S., ed, Blackwell Publishing. 145-170.

- Shirzadian-Khorramabad R, Jing, H.C., Everts, G.E., Schippers, J.H.M., Hille, J. and Dijkwel, P.P. 2010a. A mutation in the cytosolic O-acetylserine (thiol) lyase induces a genome-dependent early leaf death phenotype in *Arabidopsis*, *BMC plant Biology*, 10:80.
- Shirzadian-Khorramabad, R., Jing, H.C., Hille, J. and Dijkwel, P.P., A mutation in an *Arabidopsis* inositol polyphosphate 1-phosphatase delays senescence and deregulates stomatal aperture. 2008. In: Molecular Genetic regulation of leaf longevity; R. Shirzadian-Khorramabad, Groningen university, pp. 91-118.
- Shirzadian-Khorramabad, R., Jing, H.C., J., Dijkwel, P.P. Hille. 2010b. Identification of Arabidopsis stay-green mutants with a functional ethyleneresponse pathway. In: Agronomy Society of New Zealand Special Publication No. 13 /Grassland Research and Practice Series No. 14, McGill and Rowarth ed., pp. 119-129.
- Sturre, M.J.G., Shirzadian-Khorramabad, R., Schippers, J.H.M., Chin-A-Woeng, T.F.C., Hille, J., Dijkwel, P.P. 2009. Method for the identification of single mutations in large genomic regions using massive parallel sequencing. *Mol. Breeding*, 23:51-59.
- Terce-Laforgue, T., Mäck, G. and Hirel, B. 2004. New insights towards the function of glutamate dehydrogenase revealed during source-sink transition of tobacco (*Nicotiana tabacum* L.) plants grown under different nitrogen regimes. *Physiol. Plant.*, 120: 220-228.
- Thompson, A.R. and Vierstra, R.D. 2005. Autophagic recycling: lessons from yeast help define the process in plants. *Curr. Opin. Plant Biol.*, 8: 165-173.
- Thompson, J.E., Froese, C.D., Madey, E., Smith, M.D. and Hong, Y. 1998. Lipid

metabolism during plant senescence. *Prog. Lipid Res.*, 37: 119-141.

- Woo, H.R., Goh, C.H., Park, J.H., Teyssendier de la Serve, B., Kim, J.H., Park, Y.I. and Nam, H.G. 2002. Extended leaf longevity in the *ore4-1* mutant of *Arabidopsis* with a reduced expression of a plastid ribosomal protein gene. *Plant J.*, 31: 331-340.
- Yang, S.D., Seo, P.J., Yoon, H.K. and Park, C.M. 2011. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. *Plant Cell*, 23: 2155–2168

رضا شیرزادیان خرم آباد^{ا و ۲}*

۱ - گروه بیوتکنولوژی گیاهی، دانشکده علوم کشاورزی، دانشگاه گیلان ۲- دپارتمان بیولوژی ملکولی گیاهان- دانشگاه گرونینگن هلند *نویسنده مسئول: رضا شیرزادیان خرمآباد R.shirzadian@gmail.com

چکیدہ

فرآیند پیری آخرین مرحله از رشد و نمو برگ گیاهان است. این فرآیند بر مبنای یک برنامه ژنتیکی معین در گیاهان آغاز شده و نهایتاً به مرگ سلولی میانجامد. هدف غایی از وقوع آن در گیاهان انتقال المنتهای غذایی ماکرو و میکرو از برگهای در شرف پیرشدن به قسمتهای جوان و در حال رشد گیاهان است. وقوع این فرآیند در برگ با تغییرات گستردهای در بیولوژی حیات گیاه از جمله در بخشهای فیزیولوژیکی، مورفولوژیکی، بیوشیمیایی و ملکولی گیاهان همراه است. در این راستا نتایج حاصله از مطالعه پروفیل بیان ژنهای وابسته به پیری و شناسایی و بررسی موتانتهای مختلف پیری توانست بطور قابل توجهی بر شناخت ما در خصوص سیستم ژنتیکی کنترلکننده فرآیند پیری در گیاهان بیافزاید. در این مقاله مروری سعی شده به یاقتههای مهم در زمینه ژنهای موثر بر کنترل پیری برگ بر مبنای مطالعه موتانتهای پیری در گیاهان مختلف و بخصوص گیاه آرابیدپسیس بعنوان مدل گیاهی بپردازد. لذا عوامل موثر بر تنظیم ملکولی فرآیند پیری بر مبنای مسیرهای بیوشیمیایی فعالیت آنها طبقهبندی شده و مورد بحث قرار گرفتهاند.

کلمات کلیدی: فرآیند پیری، طول عمر، گیاه آرابیدپسیس.