Fingerprinting of some Egyptian rice genotypes using Intron-exon Splice Junctions (ISJ) markers

Document Type : Original research paper


Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Sakha, Kafr Elsheikh, Egypt


DNA fingerprinting has become an important tool for diversity assessment and varietal identification in plant breeding programs. Semi- random PCR primers targeting intron-exon splice junctions (ISJ) were used to evaluate the potential of these markers in identification and classification of rice genotypes. A total of 12 ISJ primers were used for screening fourteen Egyptian rice genotypes, including six Japonica, four Indica and four Indica/Japonica rice genotypes. A total of 117 amplified fragments were generated among which 76 fragments were polymorphic revealing average polymorphic ratio of 58.9%. Number of amplified fragments per genotype across the primers ranged from 65 in Japonica rice variety Sakha101 to 85 in Indica/Japonica rice variety Giza179. Number of polymorphic amplified fragments ranged from 3 for primer ISJ-1 to 24 for primer ISJ-2. The average numbers of amplified bands per primer per genotype were 16.71 and 10.24, respectively. Polymorphic information content (PIC) values ranged from 0.289 for ISJ-9 to 0.480 for ISJ-1 with an average of 0.375. The coefficient of similarities based on semi-random data among the studied genotypes ranged from 0.53 to 0.9 with an average of 0.66. All genotypes clearly grouped into two major clusters in the dendrogram at 58% similarity based on Jaccard’s similarity index. The first cluster represents the Indica and Indica/Japonica rice genotypes, while the second cluster represents the Japonica genotypes. These results indicate that fingerprinting using semi-specific DNA markers may be an efficient tool for varietal identification and assessing genetic diversity in rice. The results highlight the existing diversity among the studied genotypes and hence their potential use in breeding programs. The simplicity and reproducibility of ISJ markers indicates the potential utilization for molecular characterization, identification and purity assessment of rice genotypes.  


[1]     Anderson J A, Churchill G A, Autrique J E, Tanksley S D, Sorrells M E. 1993. Optimizing parental selection for genetic-linkage maps. Genome, 36(1): 181-186.
[2]     Bastawisi A O, El-Mowafi H F, Maximos M A, Sabaa M F. 2003. Hybrid rice production technology in Egypt. Proceedings: Workshop on rice integrated crop management systems for food security in the near east countries. 27-29 July, Alexandria, Egypt.
[3]     Chakravarthi B K, Naravaneni R. 2006. SSR marker based DNA fingerprinting and diversity study in rice (Oryza sativa L). Afr. J Biotechnol, 5(9): 684-688.
[4]     El-Malky M M, Fahmy A I, Kotb A A. 2007. Detection of genetic diversity using microsatellites in rice (Oryza sative, L.). African Crop Science Conference Proceeding, 8: 597-603.
[5]     El-Moghazy A M. 2007. Genetical and molecular breeding for drought tolerance in rice. Ph.D. Thesis, Dept. of Genetic, Fuc. of Agric. Kafr El-Sheikh Univ.
[6]     F.A.O. 2004 Needs of the Poor. (1 June 2005)
[7]     F.A.O. 2016. Rice market monitor. 19 (1) (April)

[8]     Gao L Z, Zhang C H,  Chang L P, Jia J Z, Qiu Z E,  Dong Y S.  2005. Microsatellite diversity within Oryza sativa with emphasis on indica–japonica divergence. Genetical Research,  85 (1):  1-14

[9]     Gawel M, Wisniewska I, Rafalski A. 2002. Semi-specific PCR for the evaluation of diversity among cultivars of wheat and triticale. Cell Mol Biol Lett, 7: 577-582.
[10]  Hammer Q, Harper D A T, Ryan P D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron, 4(1): 9 pp.
[11]  Han Z, Wang C, Song X, Guo W, Gou J, Li C, Chen X, Zhang T. 2006. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Applied Genet, 112:430–439.
[12]  Hash C T, Bramel-Cox P J. 2000. Survey of marker applications. In: Haussmann, B. I. G.; H. H. Geiger; D. E. Hess; C. T. Hash and P. Bramel-Cox (eds.)(2000). APPLICATION OF MOLECULAR MARKERS IN PLANT BREEDING. Training manual for a seminar held at IITA, Ibadan, Nigeria, from 16-17 August 1999.
[13]  Ichii M, Hong D L, Ohara Y, Zhao C M, Taketa S. 2003. Characterization of CMS and maintainer lines in indica rice (Oryza sativa L.) based on RAPD marker analysis. Euphytica 129: 249-252.
[14]  Kanawapee N, Sanitchon J, Srihaban P, Theerakulpisut P. 2011. Genetic diversity analysis of rice cultivars (Oryza sativa L.) differing in salinity tolerance based on RAPD and SSR markers. Electron J Biotechnol, 14(6):1-17.
[15]  Karp S, Kresovich K V, Bhat W G, Ayad T, Hodgkin H. 1997. Molecular tools in plant genetic resources conservation: A guide to the technologies. IPGRI Technical Bulletin No. 2. International Plant genetic Resources Institute, Rome Italy.
[16]  Kimura M. 1983. Rare variant alleles in the light of the neutral theory. Mol Biol Evol, 1:84–93.
[17]  Kwon Y S, Lee J M, Yi G B, Yi S I, Kim K M, Soh E H, Bae K M, Park E K, Song I H, Kim B D. 2005. Use of SSR markers to complement tests of distinctiveness, uniformity and stability (DUS) of pepper (Capsicum annuum L.) varieties. Mol Cells, 19: 428-435.
[18]  Matsumoto T, Wu J, Namiki N, Kanamori H, Fujisawa M, Sasaki T. 2006. Completion of rice genome sequencing -a paradigm shift of rice biology. Jpn Agric Res Q, 40(2): 99-105.
[19]  McGregor C E, Lambert C A, Greyling M M, Louw L, Warnick J H. 2000. A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica, 113: 135-144.
[20]  Murray A A, Thompson W F. 1988. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res, 8: 4321-4325.
[21]  Nagy S, Poczai P, Cernák I, Gorji A M, et al. 2012. PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem Genet, 50: 670-672.
[22]  Nandakumr N, Singh A, Sharma K, Mohapara R K, Prabhu T K V, Zaman F U. 2004. Molecular fingerprinting of hybrids and assessment of genetic purity of hybrid seeds in rice using microsatellite markers. Euphytica, 136: 257-264.
[23]  Petroudi S H H, Maibody S A M M, Nematzadeh G A, Arzani A. 2010. Semi-random PCR markers for DNA fingerprinting of rice hybrids and theirs corresponding parents. Afr J Biotechno, 9(7): 979-985
[24]  Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen J P T, Hyvönen J. 2013. Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6.
[25]  Przetakiewicz J, Nadolska-Orczyk A, Orczyk W. 2002. The use of RAPD and semi-random markers to verity somatic hybrid between diploid lines of Solanum tuberosum L. Cell Mol Biol Lett, 7: 671-676.
[26]  Rafalski A, Gizinska M, Wisniewska I. 1997. PCR-based systems for evaluation of relationships among maize inbreds. pp. 106-111. In: Saftaris AS (eds.). Genetic & biotechnology breeding maize and sorghum. Royal Society of Chemistry, Cambridge, UK.
[27]  Rafalski A, Madej L, Wisniewska I, Gawel M. 2002. The genetic diversity of component of rye hybrids. Cell Mol Biol Lett, 7: 471-475.
[28]  Rafalski A, Wisniewska I, Adamczyk J, Gawel M, Krolikowski Z. 2001. Molecular analysis of genetic diversity among maize inbred lines. Biul Ihar, 217: 127-137.
[29]  Ramadan E A, Elmoghazy A M, El-Mowafi H F. 2015. Molecular Markers based Genetic Diversity Analysis for Drought Tolerance in Rice (Oryza Sativa, L.) Using SSR Markers. Int J sci res agric sci, 2 (Proceedings): 137-146.
[30]  Ramadan E A. 2009. Genetical and biotechnological studies on salinity tolerance in rice. M. Sc. Thesis, Faculty of Agriculture, Kafrelsheikh University, Egypt.

[31]  Ravi M, Geethanjali S, Sameeyafarheen F, Maheswaran M. 2003. Molecular Marker based Genetic Diversity Analysis in Rice (Oryza sativa L.) using RAPD and SSR markers. Euphytica, 133: 243–252.

[32]  Sneath P H A, Sokal R R. 1973. Numerical taxonomy. The principles and practice of numerical classification W.H Freeman San Francisco CA.

[33]  Snedecor G W, Cochran W G. 1967.Statistical methods. 6th ed. Iowa State Univ. Press, Ames, Iowa, U.S.A.
[34]  Wang Y, Xue Y, Li J. 2005. Towards molecular breeding and improvement of rice in China. Trends Plant Sci, 10: 610-614.
[35]  Weining S, Langridge P. 1991. Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor Appl Genet, 82: 209-216.
[36]  Yashitola J, Thirumurgan T, Sundaram R M, Naseerullah M K, Ramesha M S, Sarma N P, Sonti R V. 2002. Assessment of purity of rice hybrid using microsatellite and STS markers. Crop Sci, 42: 1369-1373.
[37]  Zeng L, Kwon T R, Liu X, Wilson C, Grieve C M, Gregorio G B. 2004. Genetic diversity analyzed by microsatellite markers among rice (Oryza sativa L.) genotypes with different adaptations to saline soils. Plant Sci, 166: 1275–1285.
Volume 5, Issue 2
December 2017
Pages 38-49
  • Receive Date: 31 May 2018
  • Revise Date: 12 August 2018
  • Accept Date: 23 August 2018
  • First Publish Date: 23 August 2018