Expression of miR9863a in responsing to drought stress in some wheat and Aegilops species

Document Type : Original research paper

Authors

1 Department of Production Engineering & Plant Genetics, University of Zanjan, Iran.

2 Agricultral & Natural Resourses Collage, University of Tehran, Karaj, Iran

Abstract

MicroRNAs are small RNAs known for their essential roles in regulating both biotic and abiotic stress responses. Drought stress poses a significant challenge to wheat productivity in Iran. The present study evaluated the expression of miR9863a and its target genes in wheat, as well as three Aegilops species under drought stress. The results revealed differential expression of miR9863a in the shoots of the studied plants under drought stress conditions. Specifically its expression was increased in Ae. tauschii and Ae. crassa, while decreasing in Ae. cylindrica. The observed differential expression could be explained by the inherent nature of miRNA as a mediator molecule in various biological processes. Analyzing the expression pattern of miR9863a and its target genes in Ae. tauschii suggests that the effect of miR9863a in response to drought stress may be attributed to PLGG1, impacting glycerate/glycolate transfers and SAR1A,  influencing trafficking of transcription factors from the endoplasmic reticulum to the nucleus. In addition to complementing previous studies on the role of miR9863 in countering plant diseases, the results presented here  illustrate how this miRNA assists the abiotic stress-response mechanism in plants, particularly in the context of drought stress. 

Keywords

Ambastha, V., Matityahu, I., Tidhar, D., and Leshem, Y. (2021). RabA2b Overexpression alters the plasma-membrane proteome and improves drought tolerance in Arabidopsis. Front Plant Sci 12: 738694. doi: 10.3389/fpls.2021.738694.
Anderberg, R.J., and Walker-Simmons, M.K. (1992). Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA 89(21): 10183-10187. doi: 10.1073/pnas.89.21.10183.
Bakhshi, B., Bihamta, M.R., Hosseini Salekdeh, G., and Tohidfar, M. (2013). Identification of drought related microRNAs in rice root at early stage. Crop Biotech 3(5): 93-102 .(In Persian).
Barman, P., Choudhary, A.K., and Geeta, R. (2017). A modified protocol yields high-quality RNA from highly mucilaginous Dioscorea tubers. 3 Biotech 7(2): 150. doi: 10.1007/s13205-017-0775-9.
Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2): 281-297. doi: 10.1016/s0092-8674(04)00045-5.
Budak, H., Kantar, M., Bulut, R., and Akpinar, B.A. (2015). Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235: 1-13. doi: 10.1016/j.plantsci.2015.02.008.
Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., Lao, K.Q., Livak, K.J., and Guegler, K.J. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20): e179. doi: 10.1093/nar/gni178.
Curaba, J., Spriggs, A., Taylor, J., Li, Z., and Helliwell, C. (2012). miRNA regulation in the early development of barley seed. BMC Plant Biol 12: 120. doi: 10.1186/1471-2229-12-120.
Dai, X., and Zhao, P.X. (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(Web Server issue): W155-159. doi: 10.1093/nar/gkr319.
Dong, H., Bai, L., Chang, J., and Song, C.-p. (2018). Chloroplast protein PLGG1 is involved in abscisic acid-regulated lateral root development and stomatal movement in Arabidopsis. Biochem Biophys Res Commun 495(1): 280-285.
Dubcovsky, J., and Dvorak, J. (1994). Genome origins of Triticum cylindricum, Triticum triunciale, and Triticum ventricosum (Poaceae) inferred from variation in restriction patterns of repeated nucleotide sequences: a methodological study. Am J Bot 81(10): 1327-1335.
Eig, A. (1929). -kritische, Übersicht der Gattung. Aegilops–Rep spec nov reg veg, Beth. 55.
Falaknaz, M., Alaami, A., Mehrabi, A., Sabouri, A., Kahrizi, D., and Karimi, N. (2019). Cellular and physiological responses to drought stress in Aegilops tauschii genotypes. Cell Mol Biol (Noisy-le-grand) 65(7): 84-94.
Ferdous, J., Sanchez-Ferrero, J.C., Langridge, P., Milne, L., Chowdhury, J., Brien, C., and Tricker, P.J. (2017). Differential expression of microRNAs and potential targets under drought stress in barley. Plant Cell Environ 40(1): 11-24. doi: 10.1111/pce.12764.
Ha, M., and Kim, V.N. (2014). Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8): 509-524. doi: 10.1038/nrm3838.
Hadiarto, T., and Tran, L.S. (2011). Progress studies of drought-responsive genes in rice. Plant Cell Rep 30(3): 297-310. doi: 10.1007/s00299-010-0956-z.
Hua, Y., Zhang, C., Shi, W., and Chen, H. (2019). High-throughput sequencing reveals microRNAs and their targets in response to drought stress in wheat (Triticum aestivum L.). Biotechnol Biotechnol Equip 33(1): 465-471.
Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., Appels, R., Pfeifer, M., Tao, Y., Zhang, X., Jing, R., Zhang, C., Ma, Y., Gao, L., Gao, C., Spannagl, M., Mayer, K.F., Li, D., Pan, S., et al. (2013). Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496(7443): 91-95. doi: 10.1038/nature12028.
Kuhnert, F., Schluter, U., Linka, N., and Eisenhut, M. (2021). Transport proteins enabling plant photorespiratory metabolism. Plants (Basel) 10(5): 880. doi: 10.3390/plants10050880.
Kurtoglu, K.Y., Kantar, M., and Budak, H. (2014). New wheat microRNA using whole-genome sequence. Funct Integr Genomics 14(2): 363-379. doi: 10.1007/s10142-013-0357-9.
Li, A., Liu, D., Wu, J., Zhao, X., Hao, M., Geng, S., Yan, J., Jiang, X., Zhang, L., and Wu, J. (2014). mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 26(5): 1878-1900.
Liu, J., Cheng, X., Liu, D., Xu, W., Wise, R., and Shen, Q.H. (2014). The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLoS Genet 10(12): e1004755. doi: 10.1371/journal.pgen.1004755.
Luo, M.C., Gu, Y.Q., Puiu, D., Wang, H., Twardziok, S.O., Deal, K.R., Huo, N., Zhu, T., Wang, L., Wang, Y., McGuire, P.E., Liu, S., Long, H., Ramasamy, R.K., Rodriguez, J.C., Van, S.L., Yuan, L., Wang, Z., Xia, Z., et al. (2017). Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551(7681): 498-502. doi: 10.1038/nature24486.
Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M., International wheat genome sequencing consortium, Jakobsen, K.S., Wulff, B.B., Steuernagel, B., and Mayer, K.F. (2014). Ancient hybridizations among the ancestral genomes of bread wheat. Science 345(6194): 1250092.
Mehri, N., Fotovat, R., and Mohseni Fard, E. (1970). Effect of drought stress on expression of two important miRNAs in anther of two different wheat genotypes in term of drought stress. Cereal Res 8(3): 359-369 .(In Persian).
Mochida, K., and Shinozaki, K. (2013). Unlocking Triticeae genomics to sustainably feed the future. Plant Cell Physiol 54(12): 1931-1950. doi: 10.1093/pcp/pct163.
Mone, Y., Nhim, S., Gimenez, S., Legeai, F., Seninet, I., Parrinello, H., Negre, N., and d'Alencon, E. (2018). Characterization and expression profiling of microRNAs in response to plant feeding in two host-plant strains of the lepidopteran pest Spodoptera frugiperda. BMC Genomics 19(1): 804. doi: 10.1186/s12864-018-5119-6.
Naghavi, M.R., and Fard, M. (2021). Identification and confirmation of new common miRNAs in bread wheat and different Aegilops species by bioinformatics approach and Real time PCR. Modern Genetics J 16(1): 73-83 .(In Persian).
Nawkar, G.M., Lee, E.S., Shelake, R.M., Park, J.H., Ryu, S.W., Kang, C.H., and Lee, S.Y. (2018). Activation of the transducers of unfolded protein response in plants. Front Plant Sci 9: 214. doi: 10.3389/fpls.2018.00214.
Noori, A., Mehrabi, A.A., and Safari, H. (2015). Morphological evaluation and drought tolerance indices of Aegilops cylindrica accessions in Ilam. Iranian J of Rangelands and Forests Plant Breed and Genetic Res 23(2): 259-276 .(In Persian).
Paolacci, A.R., Tanzarella, O.A., Porceddu, E., and Ciaffi, M. (2009). Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10(1): 11. doi: 10.1186/1471-2199-10-11.
Pfaffl, M.W., Horgan, G.W., and Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9): e36. doi: 10.1093/nar/30.9.e36.
Pick, T.R., Bräutigam, A., Schulz, M.A., Obata, T., Fernie, A.R., and Weber, A.P. (2013). PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proc Natl Acad Sci USA 110(8): 3185-3190.
Safarzadeh, M., Fotovat, R., Azimi, M., Mohsenifard, E., and Bakhshi, B. (2014). Expression analysis of miRNAs That regulate transcription factors related to Auxin, Gibberellin and ABA signaling pathways, under water stress in wheat (Triticum aestivum L.). Crop Biotech 4(6): 21-33 .(In Persian).
Tang, J., and Chu, C. (2017). MicroRNAs in crop improvement: fine-tuners for complex traits. Nat Plants 3(7): 17077. doi: 10.1038/nplants.2017.77.
Vaghefi, S.A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., Yang, H., and Abbaspour, K.C. (2019). The future of extreme climate in Iran. Sci Rep 9(1): 1464.
Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E.F., and Hellens, R.P. (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3(1): 12. doi: 10.1186/1746-4811-3-12.
Vernoud, V., Horton, A.C., Yang, Z., and Nielsen, E. (2003). Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131(3): 1191-1208. doi: 10.1104/pp.013052.
Wang, X., Xu, M., Gao, C., Zeng, Y., Cui, Y., Shen, W., and Jiang, L. (2020). The roles of endomembrane trafficking in plant abiotic stress responses. J Integr Plant Biol 62(1): 55-69. doi: 10.1111/jipb.12895.
Wei, B., Cai, T., Zhang, R., Li, A., Huo, N., Li, S., Gu, Y.Q., Vogel, J., Jia, J., Qi, Y., and Mao, L. (2009). Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics 9(4): 499-511. doi: 10.1007/s10142-009-0128-9.
Yang, S., Vanderbeld, B., Wan, J., and Huang, Y. (2010). Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3(3): 469-490. doi: 10.1093/mp/ssq016.
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., and Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae 7(3): 50.
Zhang, Q. (2007). Strategies for developing Green Super Rice. Proc Natl Acad Sci U S A 104(42): 16402-16409. doi: 10.1073/pnas.0708013104.
Zhang, R., Zhang, S., Hao, W., Song, G., Li, Y., Li, W., Gao, J., Zheng, Y., and Li, G. (2019). Lineage-specific evolved microRNAs regulating NB-LRR defense genes in Triticeae. Int J Mol Sci 20(13): 3128. doi: 10.3390/ijms20133128.
Zhao, X., Bai, S., Li, L., Han, X., Li, J., Zhu, Y., Fang, Y., Zhang, D., and Li, S. (2020). Comparative transcriptome analysis of two Aegilops tauschii with contrasting drought tolerance by RNA-seq. Int J Mol Sci 21(10): 3595. doi: 10.3390/ijms21103595.
Zivcak, M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H.M., Yang, X., and Allakhverdiev, S.I. (2013). Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117(1-3): 529-546. doi: 10.1007/s11120-013-9885-3.
 
Volume 10, Issue 1
June 2022
Pages 22-34
  • Receive Date: 21 December 2022
  • Revise Date: 08 May 2023
  • Accept Date: 15 May 2023
  • First Publish Date: 15 May 2023