Comparison of comet assay parameter patterns between self-pollinated and cross-pollinated diploid medicago species, their resulting tetraploids and cultivated cultivars

Document Type : Original research paper

Authors

1 Department of Biotechnology and Plant breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Plant breeding and Biotechnology, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

3 Research Institutes of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO)

Abstract

Three parameters of comet assay (tail length, tail intensity, and tail moment) were used to compare the autotetraploids produced from three populations of cross pollinated Medicago sativa spp. caerulea  and five diploid self-pollinated species from Medicago genus. These specimens were subjected to three concentrations of colchicine (0.1, 0.5 and 1%) alongside five alfalfa cultivated cultivars. In the concentrations of 0.1% and 0.5%, a similar level of increase and pattern was observed in the two autotetraploids medic categories. Increasing of concentration from 0.1% to 0.5% resulted in a more pronounced augmentation of comet parameters. Autotetraploids induced by the two mentioned colchicine concentrations exhibited increases in the value and pattern of the three comet parameters compared to the cultivated cultivars and the two categories medics in diploid level. At the concentration of 1% colchicine, only two annual medic species produced tetraploids showing very pronounced augmentation of comet parameters in comparison with 0.1% and 0.5% of colchicine. Changes in patterns and values of the three parameters in induced tetraploids compared to cultivated alfalfa  and the two categories medics in diploid level, demonstrate differential effects of damages of colchicines from one concentration to another. A new variability in each concentration change will be expected.

Keywords

Ade, R., and RAI, M.K. (2010). Colchicine, current advances and future prospects. Nus Biosci 2(2): 90-96.
Alam, H., and Razaq, M. (2015). Induced polyploidy as a tool for increasing tea (Camellia sinensis L.) production. J Northeast Agric Univ 22(3): 43-47.
Amaeze, N.H., Schnell, S., Sozeri, O., Otitoloju, A.A., Egonmwan, R.I., Arlt, V.M., and Bury, N.R. (2015). Cytotoxic and genotoxic responses of the RTgill-W1 fish cells in combination with the yeast oestrogen screen to determine the sediment quality of Lagos lagoon, Nigeria. Mutagenesis 30(1): 117-127. doi: 10.1093/mutage/geu032.
Ansari, E., Khosrowshahli, M., Etminan, A., and Jafari, A.A. (2022). Polyploidy induction and ploidy level determination in annual and perennial diploid Medicago species using the enumeration of chloroplasts of stomata guard cells. Cytol Genet 56(2): 164-171.
Ansari, E., Khosrowshahli, M., Jafari, A.A., and Etminan, A. (2021). Induction of Autotetraploidy and its effects on morphophysiological traits in some annual and perennial medics. Caryologia 74(1): 75-82.
Arya, S., and Mukherjee, A. (2014). Sensitivity of Allium cepa and Vicia faba towards cadmium toxicity. J Soil Sci Plant Nutr 14(2): 447-458.
Demarly, Y., and Demarly, Y. (1977). Génétique et amélioration des plantes. Masson Paris.
Dhooghe, E., Van Laere, K., Eeckhaut, T., Leus, L., and Van Huylenbroeck, J. (2011). Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue and Organ Culture 104: 359-373.
El-Nashar, Y.I., and Ammar, M.H. (2016). Mutagenic influences of colchicine on phenological and molecular diversity of Calendula officinalis L. Genet Mol Res 15(2): 1-15. doi: 10.4238/gmr.15027745.
Firbas, P., and Amon, T. (2014). Chromosome damage studies in the onion plant Allium cepa L. Caryologia 67(1): 25-35.
Fiskesjó, G. (1993). Allium test I: A 2–3 day plant test for toxicity assessment by measuring the mean root growth of onions (Allium cepa L.). Environ toxicol water qual 8(4): 461-470.
Forchhammer, L., Ersson, C., Loft, S., Moller, L., Godschalk, R.W., van Schooten, F.J., Jones, G.D., Higgins, J.A., Cooke, M., Mistry, V., Karbaschi, M., Collins, A.R., Azqueta, A., Phillips, D.H., Sozeri, O., Routledge, M.N., Nelson-Smith, K., Riso, P., Porrini, M., et al. (2012). Inter-laboratory variation in DNA damage using a standard comet assay protocol. Mutagenesis 27(6): 665-672. doi: 10.1093/mutage/ges032.
Gichner, T., and Plewa, M.J. (1998). Induction of somatic DNA damage as measured by single cell gel electrophoresis and point mutation in leaves of tobacco plants. Mutat Res-Fund Mol M 401(1-2): 143-152.
Gustafsson, Å. (1940). The mutation system of the chlorophyll apparatus. Kungliga Fysiografiska Sallskapets i Lund Handlingar 51(11).
Gustafsson, Å. (1947). Mutations in agricultural plants. Hereditas 33(1‐2): 1-100.
Hattab, S., Chouba, L., Ben Kheder, M., Mahouachi, T., and Boussetta, H. (2009). Cadmium‐and copper‐induced DNA damage in Pisum sativum roots and leaves as determined by the Comet assay. Plant Biosyst 143(sup1): S6-S11.
Jiang, Z., Qin, R., Zhang, H., Zou, J., Shi, Q., Wang, J., Jiang, W., and Liu, D. (2014a). Determination of Pb genotoxic effects in Allium cepa root cells by fluorescent probe, microtubular immunofluorescence and comet assay. Plant Soil 383: 357-372.
Jiang, Z., Zhang, H., Qin, R., Zou, J., Wang, J., Shi, Q., Jiang, W., and Liu, D. (2014b). Effects of lead on the morphology and structure of the nucleolus in the root tip meristematic cells of Allium cepa L. Int J Mol Sci 15(8): 13406-13423. doi: 10.3390/ijms150813406.
Khosrowchahli, M. (1974). Étude comparée des structures diploïdes et tétraploïdes chez la luzerne cultivée, Medicago sativa L. Université de París-sud, Centre D'Orsay.
Kiffe, M., Christen, P., and Arni, P. (2003). Characterization of cytotoxic and genotoxic effects of different compounds in CHO K5 cells with the comet assay (single-cell gel electrophoresis assay). Mutat Res 537(2): 151-168. doi: 10.1016/s1383-5718(03)00079-2.
Kostoff, D., and Kendall, J. (1931). Studies on certain Petunia aberrants. J Genet 24: 165-178.
Kumar, M.K., and Rani, M.U. (2013). Colchiploidy in fruit breeding-a review. Horticulture 2(6).
Lanier, C., Manier, N., Cuny, D., and Deram, A. (2015). The comet assay in higher terrestrial plant model: Review and evolutionary trends. Environ Pollut 207: 6-20. doi: 10.1016/j.envpol.2015.08.020.
Levan, A. (1938). The effect of colchicine on root mitoses in Allium. Hereditas 24(4): 471-486.
Manzoor, A., Ahmad, T., Bashir, M.A., Hafiz, I.A., and Silvestri, C. (2019). Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants (Basel) 8(7): 194. doi: 10.3390/plants8070194.
Marzougui, N., Boubaya, A., Thabti, I., Elfalleh, W., Guasmi, F., and Ferchichi, A. (2011). Polyploidy induction of Tunisian Trigonella foenumgreaum L. populations. Afr J Biotechnol 10(43): 8570-8577.
Ostling, O., and Johanson, K.J. (1984). Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123(1): 291-298. doi: 10.1016/0006-291x(84)90411-x.
Pereira, R.C., Ferreira, M.T.M., Davide, L.C., Pasqual, M., Mittelmann, A., and Techio, V.H. (2014). Chromosome duplication in Lolium multiflorum Lam. Crop Breed Appl Biotechnol 14: 251-255.
Singh, N.P., McCoy, M.T., Tice, R.R., and Schneider, E.L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1): 184-191. doi: 10.1016/0014-4827(88)90265-0.
 
Volume 10, Issue 1
June 2022
Pages 35-47
  • Receive Date: 23 December 2022
  • Revise Date: 10 April 2023
  • Accept Date: 15 May 2023
  • First Publish Date: 15 May 2023