First Report of a set of Genetic Identities in Prunus Rootstocks by SSR Markers

Document Type : Research Paper

Authors

1 System Biology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Seed and Plant Improvement Institutes Campus, Mahdasht Road, Karaj, Iran

2 Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

3 Research Center of Agriculture and Natural Resources of East Azarbaijan, Azar Shahr Road, Tabriz, Iran

4 Department of Biotechnology, University of Zanjan, University Road, Zanjan, Iran

Abstract

Prunus rootstocks play an important role in modern horticulture and commercial orchards owing to their responsibility for a wide range of characters from compatibility with cultivars to adaptation to biotic and abiotic stresses. In this study, Thirty Prunus rootstock samples were tested by 25 microsatellite markers in order to identify the genetic identity and relationships among them.17 SSR markers were useful in the discrimination of the samples on the basis of their unique molecular identities. Samples with similar codes such as (HS-401/HS-402/HS-403), (HS811/HS507/HS737/GF677), (HS126/HS-202), (HS-802/HS602) and (HS522/HS003/HS302) were shown mislabeled trees. Based on partial repeated bisection (RB ) data, the samples were grouped into six clusters which the largest cluster contained nine genotypes (all APPL, APU2 and APPU3). The second largest cluster consisted of eight genotypes (all AM, all APL, APU1, APU3 and APH10). APH rootstocks were placed into clusters two, three and six as well as cluster one which included only APPU rootstocks. The highest amount of the average internal similarities (Isim ) (0.973) belonged to cluster six, whereas the minimum amount of Isim (0.924) belonged to cluster three. The minimum level of the average external similarities (Esim ) was related to groups one (0.664) and six (0.638) indicating the highest genetic distance from other groups. The genetic identities and relatedness generated in this study provide a standard for further breeding attempts and will be used as a reference the cultivation of these promising newly released genotypes.

Keywords

Main Subjects


[1]      Bianchi, V.J., Sansavini, S. and Fachinello, J.C. 2004. Microsatellite markers for identification of Prunus spp. Rootstocks. Sci Agric, 61: 303-306.
 [2]     Bouhadida, M., Casas, A.M., Gonzalo, M.J., Arus, P., Moreno, MA. and Gogorcena, Y. 2009. Molecular characterization and genetic diversity of Prunus rootstocks. Sci Hort,120: 237-245.
 [3]     Carrasco, B., Diaz, C., Moya, M., Gebauer, M. and Garcia-Gonzalez, R. 2012. Genetic characterization of Japanese plum cultivars (Prunus salicina) using SSR and ISSR molecular markers. Cien Investig Agrar, 39: 533–543.
 [4]     Casas, A.M., Igartua, E., Balaguer, G.and Moreno, M.A. 1999. Genetic diversity of Prunus rootstocks analyzed by RAPD markers. Euphytica, 110: 139-149.
 [5]     Cheng, Z. and Huang, H.2009. SSR fingerprinting Chinese peach cultivars and lan-draces (Prunus persica) and analysis of their genetic relationships. Sci Hortic, 120: 188–193.
 [6]     Ercisli, S., Agar, G., Yildirim, N., Duralija, B., Vokurka, A. and Karlidag, H.2011. Genetic diversity in wild sweet cherries (Prunus avium) in Turkey revealed by SSR markers. Genet Mol Res, 10: 1211–1219.
 [7]     Fathi, A., Ghareyazi, B., Haghnazari, A., Ghaffari, M.R., Pirseyedi, S.M., Kadkhodaei, S., Naghavi, M.R. and Mardi, M. 2008. Assessment of the genetic diversity of almond (Prunus dulcis) using microsatellite markers and morphological traits. Iran J Biotechnol, 6: 98–106.
 [8]     Ganopoulos, I.V., Kazantzis, K., Chatzicharisis, I., Karayiannis, I. and Tsaftaris, A.S. 2011. Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers. Euphytica, 181: 237–251.
 [9]     Jimenez, S., Pinochet, J., Gogorcena, Y., Betran, J.A. and Moreno, M.A. 2007. Influence of different vigour cherry rootstocks on leaves and shoots mineral composition. Sci Horticult, 107: 73-79.
 [10]   Joao, B.V., Silviero, S. and Carlos FJ. 2004. Microsatellite markers for identification of Prunus spp. rootstocks. Sci Agric, 61: 303-306.
 [11]   Lee, S. and Wen, J. 2001. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Am J Bot, 88: 150-160.
 [12]   Liu, X., Reighard, G.L., Swire-Clark, G.A. and Baird, W.V. 2007. Peach rootstock identification by DNA fingerprinting with microsatellite (SSR) markers. J Am Pomol Soc, 61: 162-166.
 [13]   Majidian, P., Zeinalabedini, M., Dejampour, J., Krska, B., Nakhoda, B. and Mardi, M. 2013. Evaluation of genetic relationships of some apricot accessions using fluorescent-AFLP markers, Acta Hortic, 976: 265–270.
 [14]   Mariniello, L., Sommella, M.G., Sorrentino, A., Forlani, M. and Porta, R. 2002. Identification of Prunus armeniaca cultivars by RAPD and SCAR markers. Biotechnol Lett, 24: 749–755.
 [15]   Rasmussen, M. and Karypis, G. 2004. GCLUTO an interactive clustering, visualization, and analysis system. CSE/UMN technical report no.04-021.
 [16]   Serrano, B., Gomez-Aparisi, J. and Hormaza, J.I. 2002. Molecular fingerprinting of Prunus rootstocks using SSRs. J hortic sci biotech, 77: 368-372.
 [17]   Stanys, V., Frercks, B., Siksnianiene, J.B., Stepulaitiene, I., Gelvonauskiene, D., Staniene, G. and Bobinas, C. 2012. Identification of sweet cherry (Prunus avium L.) cultivars using AFLP and SSR markers, Zemdirbyste, 99: 437–444.
 [18]   Struss, D., Ahmad, R., Southwick, S.M. and Boritzki, M. 2003. Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP markers. J Am Soc Hortic Sci, 128: 904–909.
 [19]   Turkoglu, Z., Bilgener, S., Ercisli, S., Bakir, M., Koc, A., Akbulut, M., Gercekcioglu, R., Gunes, M. and Esitken, A. 2010. Simple sequence repeat-based assessment of genetic relationships among Prunus rootstocks. Genet Mol Res ,9: 2156-2165.
 [20]   Wunsch, A. 2009. Cross-transferable polymorphic SSR loci in Prunus species. Sci Hortic, 120: 348–352.
 [21]   Yu, M.L.,Wang, W.Y., Ma, R.J., Shen, Z.J. and Fang, J.G. 2012. An improved strategy basedon RAPD markers efficiently identified 95 peach cultivars. Genet Mol Res,11: 1158–1168.
 [22]   Zeinalabedini, M., Sohrabi, S., Nikoumanesh, K., Imani, A. and Mardi, M. 2012. Phenotypic and molecular variability and genetic structure of Iranian almond cultivars. Plant Sys Evol, 298: 1917-1929.
 [23]   Zeinalabedini, M., Dezhampour, J., Majidian, P., Khakzad, M., Zanjani, B., Soleimani, A. and Farsi, M. 2014. Molecular variability and genetic relationship and structure of Iranian Prunus rootstocks revealed by SSR and AFLP. Sci Hortic, 172: 258–264.