Expression of an epitope-based recombinant vaccine against Foot and Mouth Disease (FMDV) in tobacco plant (Nicotiana tabacum)

Document Type: Research Paper


1 Department of Biotechnology and plant breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Biotechnology and plant breeding, Ferdowsi University of Mashhad, Mashhad, Iran

3 Research and technology institute of plant production, Shahid Bahonar University, Kerman, Iran


Regarding high potential of green plants for development of recombinant vaccines, this research was conducted to evaluate expression of a novel recombinant vaccines against Foot and Mouth Disease (FMDV) in tobacco plant. For this purpose, a synthetic gene encoding 129-169 amino acids of foot and mouth disease virus capsid protein VP1 was transferred to tobacco plant via Agrobacterium-mediated genetic transformation. Considering codon usage optimized for tobacco, ribosome binding site and endoplasmic reticulum signal peptide were included in the synthetic gene to enhance expression level. Expression of the synthetic gene in tobacco seedlings was analyzed at transcription and translation levels and production of recombinant protein was quantified. Moreover, an in vivo immunization assay was carried out to verify immunogenicity of the expressed peptide in model animals. Results showed that expression of the recombinant protein in two lines of transgenic plants was a high as 0.65% and 0.72% of total soluble protein. The recombinant protein was able to induce immunogenic response when parenterally administered in rabbit.


[1]     Carrillo, C., Wigdorovitz, A., Oliveros, J. C., Zamorano, P., Sadir, A. M., Gomez, N. 1998. Protective immune response to foot-and-mouth disease virus with VP1 expressed in transgenic plants. J Virol, 72: 1688–90.

[2]     Wigdorovitz A, Carrillo C, Trono K, Dus santos M, Sadir Am, Ordas R, Escribano J and Borca M. 2001. Induction of a virus specific antibody response to foot and mouth disease virus using the structural protein VP1 expressed in transgenic potato plants; Virol. Immunol, 14: 49–57. ( doi:10.1089/08828240151061383)

[3]     Zhang, L., Zhang, J., Chen, H., Zhou, J., Ma, L., Ding, Y., Liu, Y. 2011.  Research advance for FMD novel vaccines. Virol. J, 8 (268): 1-6. (doi:  10.1186/1743-422X-8-268)

[4]     Dus Santos, M.J., Wigdorovitz, A., Trono, K. 2002. A novel methodology to develop a foot and mouth disease virus (FMDV) peptide-based vaccine in transgenic plants. Vaccine, 20: 1141–7. (doi: 10.1016/S0264-410X(01)00434-0)

[5]     Wang, C, Y., Chang, T. Y., Walfield, A.M., Ye,  J., Shen, M. 2002.  Effective synthetic peptide vaccine for foot-and-mouth disease in swine. Vaccine, 20: 2603–2610. (doi: 10.1016/S0264-410X(02)00148-2).

[6]     Sala, F., Rigano, M., Barbante, A. 2003. Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives; Vaccine, 21: 803–808. (doi: 10.1016/S0264-410X(02)00603-5).

[7]     Kozak, M. 1989. The scanning model for translation: an update.  J. Cell Biol, 108:  229–241. (doi: 10.1083/jcb.108.2.229)

[8]     Habibi, M., Malekzadeh-Shafaroudi, S., Marashi, H., Moshtaghi, N., Nasiri, M., & Zibaee, S. (2014). The transient expression of coat protein of Foot and Mouth Disease Virus (FMDV) in spinach (Spinacia oleracea) using Agroinfiltration. Journal of Plant Molecular Breeding, 2(2), 18-27. (doi: 10.22058/jpmb.2014.11950)

[9]     Haq, T., Mason, H.S., Clements, J.D., Arntzen, C.J. 1995. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science, 268: 714–716. (doi: 10.1126/science.7732379)

[10]  Fuhrmann, M., Oertel, W., Hegemann, P. 1999. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J, 19: 353–361. (doi: 10.1046/j.1365-313X.1999.00526.x)

[11]  Perlak, F., Fuchs, R., Dean, D., McPherson, S., Fischhoff, D. 1991. Modification of the coding sequence enhances plant expression of insect control protein genes;  Proc. Natl. Acad. Sci. USA, 88: 3324–3328. (doi: 10.1073/pnas.88.8.3324)

[12]  Habibi-Pirkoohi, M., Mohkami, A. 2015. Recombinant vaccine production in green plants: State of art. J. Cell. Mol. Research. 7(1), 59-67. (doi: 10.22067/jcmr.v7i1.45074)

[13]  Alvarez, M., Pinyerd, L., Crisantes, D. 2006. Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice. Vaccine, 24: 2477–2490. (10.1016/j.vaccine.2005.12.057)

[14]  Rodriguez, L.L., Grubman, M.J. 2009. Foot and mouth disease virus vaccines. Vaccine. 27, 90-94. (doi: 10.1016/j.vaccine.2009.08.039)

[15]  Sarangi, L.N.,  Mohapatra, J.K., Subramaniam, S., Sanyal, A., Pattnaik, B. 2013. Antigenic site variation in foot-and-mouth disease virus serotype O grown under vaccinal serum antibodies in vitro. Virus Research, 176:273–279.

[16]  Upadhyaya, S., Ayelet, G., Paul, G.,  King, D.P.,  Patona D.J., Mahapatra, M. 2014.  Genetic basis of antigenic variation in foot-and-mouth disease serotype A viruses from the Middle East. Vaccine, 32:631–638 (doi: /10.1016/j.vaccine.2013.08.102)

[17]  Marquardt, O.,  Rahman, M.M., Freiberg, B. 2000. Genetic and antigenic variance of foot-and-mouth disease virus type Asia1. Arch. Virol, 145(1):149-157. (doi: 10.1007/s007050050011)

[18]  Wigdorovitz, A., Carrillo, C.,  Dus Santos, M.J.,  Trono, K.  1999. Induction of a Protective Antibody Response to Foot and Mouth Disease Virus in Mice Following Oral or Parenteral Immunization with Alfalfa Transgenic Plants Expressing the Viral Structural Protein VP11. Virol, 255: 347-353. (doi: 10.1006/viro.1998.9590)

[19]  Arakawa, T., Chong, D., Langridge, W. 1998. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nature Biotech, 16: 292–7. (doi: 10.1038/nbt0398-292)

[20]  Castañón, S., Marın, M.S., Alonso, J.M., Boga, J.A., Casais, R., Humara, J.M. 1999. Immunization with potato plants expressing VP60 proteins protects against rabbit hemorragic disease virus. J Virol, 73: 4452–5.

[21]  Gómez, N., Wigdorovitz, A., Castañón, A., Gil, F., Ordas, R.,  Borca, M.V. 2000. Oral immunogenicity of the plant derived spike protein from swine-transmissible gastroenteritis coronavirus. Arch Virol,  145: 1725–32. (doi: 10.1007/s007050070087)

[22]  Jie, Yu., Langridge, W. 2003 Expression of Rotavirus Capsid Protein VP6 in Transgenic Potato and Its Oral Immunogenicity in Mice. Trans Res, 12: 163-169. (doi: 10.1023/A:1022912130286)

[23]  Mason, H. S.,  Ball, J. M.,  Shi, J. J., Jiang, X.,  Estes, M. K.,  Arntzen, C. J . 1996. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proceedings of the National Academy of Sciences. 93(11): 5335-40. (doi:10.1073/pnas.93.11.5335)

[24]  Dus Santos, MJ., Carrillo, C., Ardil, F., Rios R, Franzone, P. 2005. Development of transgenic alfalfa plants containing the foot and mouth disease virus structural polyprotein gene P1 and its utilization as an experimental immunogen. Vaccine, 23: 1838–1843. (doi: 10.1016/j.vaccine.2004.11.014)

[25] Sambrook, J., Fritsch, F., and Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd ed, New York: Cold Spring Harbor Laboratory Press.