Identification of drought stress-responsive long non-coding RNAs (lncRNAs) in root tip region of rice (Oryza sativa)

Document Type : Original research paper

Authors

1 Institute of Biotechnology, Shiraz University, Shiraz, Iran.

2 Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran.

3 Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University, Shiraz

Abstract

Drought is a severe abiotic stress factor that significantly impacts rice production globally. The investigation of drought stress response components, particularly in plant roots, holds great importance. Recent evidence highlights the critical role played by long non-coding RNAs (lncRNAs) in the response to abiotic stress. In this study, we identified drought stress-induced lncRNAs in the root tip region of rice using transcriptome sequencing analysis performed on seedlings of a sensitive rice genotype (IR64) under drought and control conditions. We identified a total of 358 differentially expressed lncRNAs (DElncRNA), more than 60% of which were in intergenic regions. Our results demonstrated that DElncRNAs can directly or indirectly regulate 710 and 7535 mRNAs in cis and trans, respectively. Additionally, the target genes of DElncRNAs were involved in drought resistance genes, lateral root growth, and genes affecting auxin transport. We also identified 24 conserved sequence motifs in the upstream regions of DElncRNAs and differentially expressed mRNAs (DEmRNAs) motifs through a search and functional analysis of these motifs indicated their involvement in regulation of transcription, translation, and the transmembrane receptor protein tyrosine kinase signaling pathway. Finally, we constructed a network of DElncRNAs and DEmRNAs. Our functional analysis of the top 10 hub lncRNAs in the network demonstrated their involvement in growth processes, cellular responses to stimuli, and signaling pathways. These results offer a comprehensive perspective on potentially functional lncRNAs and provide insight into the molecular mechanisms underlying drought resistance in the root tip region of rice.

Keywords

Akula, R., and Ravishankar, G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11): 1720-1731.
Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., and Noble, W.S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue): W202-208. doi: 10.1093/nar/gkp335.
Barbez, E., Dunser, K., Gaidora, A., Lendl, T., and Busch, W. (2017). Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc Natl Acad Sci USA 114(24): E4884-E4893. doi: 10.1073/pnas.1613499114.
Bhatia, G., Singh, A., Verma, D., Sharma, S., and Singh, K. (2020). Genome-wide investigation of regulatory roles of lncRNAs in response to heat and drought stress in Brassica juncea (Indian mustard). Environ Exp Bot 171: 103922.
Bizet, F., Hummel, I., and Bogeat-Triboulot, M.B. (2015). Length and activity of the root apical meristem revealed in vivo by infrared imaging. J Exp Bot 66(5): 1387-1395. doi: 10.1093/jxb/eru488.
Brunkard, J.O., and Baker, B. (2018). A two-headed monster to avert disaster: HBS1/SKI7 is alternatively spliced to build eukaryotic RNA surveillance complexes. Front Plant Sci 9: 1333.
Buske, F.A., Boden, M., Bauer, D.C., and Bailey, T.L. (2010). Assigning roles to DNA regulatory motifs using comparative genomics. Bioinformatics 26(7): 860-866. doi: 10.1093/bioinformatics/btq049.
Caixia, G., Xiuwen, Z., Hubo, L., Mlekwa, U.A., Yu, G., and Jie, X. (2020). Roles of lncRNAs in rice: advances and challenges. Rice Sci 27(5): 384-395.
Chen, L., Shi, S., Jiang, N., Khanzada, H., Wassan, G.M., Zhu, C., Peng, X., Xu, J., Chen, Y., and Yu, Q. (2018). Genome-wide analysis of long non-coding RNAs affecting roots development at an early stage in the rice response to cadmium stress. BMC Genomics 19: 1-10.
Deng, F., Zhang, X., Wang, W., Yuan, R., and Shen, F. (2018). Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress. BMC Plant Biol 18(1): 23. doi: 10.1186/s12870-018-1238-0.
Espinosa, J.M. (2017). On the origin of lncRNAs: missing link found. Trends Genet 33(10): 660-662.
Fukunaga, T., and Hamada, M. (2017). RIblast: an ultrafast RNA-RNA interaction prediction system based on a seed-and-extension approach. Bioinformatics 33(17): 2666-2674. doi: 10.1093/bioinformatics/btx287.
Gupta, S., Stamatoyannopoulos, J.A., Bailey, T.L., and Noble, W.S. (2007). Quantifying similarity between motifs. Genome Biol 8(2): 1-9.
Ishimaru, K., Shirota, K., Higa, M., and Kawamitsu, Y. (2001). Identification of quantitative trait loci for adaxial and abaxial stomatal frequencies in Oryza sativa. Int J Plant Physiol Biochem 39(2): 173-177.
Jin, J., Zhang, H., Kong, L., Gao, G., and Luo, J. (2014). PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42(Database issue): D1182-1187. doi: 10.1093/nar/gkt1016.
Jung, H., Lee, D.-K., Do Choi, Y., and Kim, J.-K. (2015). OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci 236: 304-312.
Junhua, L., Xuemei, Y., Jinfeng, C., Tingting, L., Zijin, H., Ying, X., Jinlu, L., Jiqun, Z., Mei, P., and Hui, F. (2021). Osa-miR439 negatively regulates rice immunity against Magnaporthe oryzae. Rice Sci 28(2): 156-165.
Kaashyap, M., Ford, R., Kudapa, H., Jain, M., Edwards, D., Varshney, R., and Mantri, N. (2018). Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea. Scientific Rep 8(1): 4855.
Khan, A., Fornes, O., Stigliani, A., Gheorghe, M., Castro-Mondragon, J.A., Van Der Lee, R., Bessy, A., Cheneby, J., Kulkarni, S.R., and Tan, G. (2018). JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 46(D1): D260-D266.
Lafitte, H., Ismail, A., and Bennett, J. (2004). "Abiotic stress tolerance in rice for Asia: progress and the future", in: New directions for a diverse planet: Proceedings of the 4 th International Crop Science Congress, ed. by Fischer, T., Turner, N., Angus, J., McIntyre, L., Robertson, M., Borrell, A. and Lloyd, D. Brisbane, Australia. (International Rice Research Institute: Citeseer).
Lee, J.T. (2012). Epigenetic regulation by long noncoding RNAs. Science 338(6113): 1435-1439. doi: 10.1126/science.1231776.
Li, L., Eichten, S.R., Shimizu, R., Petsch, K., Yeh, C.T., Wu, W., Chettoor, A.M., Givan, S.A., Cole, R.A., Fowler, J.E., Evans, M.M., Scanlon, M.J., Yu, J., Schnable, P.S., Timmermans, M.C., Springer, N.M., and Muehlbauer, G.J. (2014). Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15(2): R40. doi: 10.1186/gb-2014-15-2-r40.
Li, P., Yang, H., Wang, L., Liu, H., Huo, H., Zhang, C., Liu, A., Zhu, A., Hu, J., Lin, Y., and Liu, L. (2019). Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front Genet 10: 55. doi: 10.3389/fgene.2019.00055.
Liu, W., Tai, H., Li, S., Gao, W., Zhao, M., Xie, C., and Li, W.X. (2014). b HLH 122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol 201(4): 1192-1204.
Lynch, J.P., Chimungu, J.G., and Brown, K.M. (2014). Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement. J Exp Bot 65(21): 6155-6166. doi: 10.1093/jxb/eru162.
Mackill, D.J., and Khush, G.S. (2018). IR64: a high-quality and high-yielding mega variety. Rice (N Y) 11(1): 18. doi: 10.1186/s12284-018-0208-3.
Nadarajah, K., and Kumar, I.S. (2019). Drought response in rice: the mirna story. Int J Mol Sci 20(15): 3766. doi: 10.3390/ijms20153766.
Nejat, N., and Mantri, N. (2018). Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses. Crit Rev Biotechnol 38(1): 93-105. doi: 10.1080/07388551.2017.1312270.
Peleg, Z., Fahima, T., Krugman, T., Abbo, S., Yakir, D., Korol, A.B., and Saranga, Y. (2009). Genomic dissection of drought resistance in durum wheat x wild emmer wheat recombinant inbreed line population. Plant Cell Environ 32(7): 758-779. doi: 10.1111/j.1365-3040.2009.01956.x.
Ragupathy, R., Ravichandran, S., Mahdi, M.S., Huang, D., Reimer, E., Domaratzki, M., and Cloutier, S. (2016). Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Sci Rep 6(1): 39373. doi: 10.1038/srep39373.
Rossetto, C.C., Tarrant-Elorza, M., and Pari, G.S. (2013). Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+) monocytes and CD34 (+) cells. PLoS Pathog 9(5): e1003366. doi: 10.1371/journal.ppat.1003366.
Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290(3): 998-1009. doi: 10.1006/bbrc.2001.6299.
Sanan-Mishra, N., Kumar, V., Sopory, S.K., and Mukherjee, S.K. (2009). Cloning and validation of novel miRNA from basmati rice indicates cross talk between abiotic and biotic stresses. Mol Genet Genom 282: 463-474.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11): 2498-2504. doi: 10.1101/gr.1239303.
Sharoni, A.M., Nuruzzaman, M., Satoh, K., Moumeni, A., Attia, K., Venuprasad, R., Serraj, R., Kumar, A., Leung, H., Islam, A.K., and Kikuchi, S. (2012). Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64. Mol Genet Genomics 287(1): 1-19. doi: 10.1007/s00438-011-0659-3.
Singh, V.K., and Jain, M. (2015). Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean. Front Plant Sci 6: 918. doi: 10.3389/fpls.2015.00918.
Smith, B.D. (1995). The emergence of agriculture. United States: W H Freeman & Co.
Sun, Q., Csorba, T., Skourti-Stathaki, K., Proudfoot, N.J., and Dean, C. (2013). R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340(6132): 619-621.
Tang, Z., Xu, M., Ito, H., Cai, J., Ma, X., Qin, J., Yu, D., and Meng, Y. (2019). Deciphering the non-coding RNA-level response to arsenic stress in rice (Oryza sativa). Plant Signal Behav 14(9): 1629268. doi: 10.1080/15592324.2019.1629268.
Tiwari, S., Jain, M., Singla-Pareek, S.L., Bhalla, P.L., Singh, M.B., and Pareek, A. (2023). Pokkali: A naturally evolved salt-tolerant rice shows a distinguished set of lncrnas possibly contributing to the tolerant phenotype. Int J Mol Sci 24(14): 11677.
Wang, K., Ding, Y., Cai, C., Chen, Z., and Zhu, C. (2019). The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. Physiol Plant 165(4): 690-700. doi: 10.1111/ppl.12728.
Wang, T.Z., Liu, M., Zhao, M.G., Chen, R., and Zhang, W.H. (2015). Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol 15(1): 131. doi: 10.1186/s12870-015-0530-5.
Xiao, X., Wu, Z.-C., and Chou, K.-C. (2011). A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS One 6(6): e20592.
Xu, H., Zhang, Y., Yang, X., Wang, H., and Hou, D. (2022). Tissue specificity and responses to abiotic stresses and hormones of PIN genes in rice. Biologia 77(5): 1459-1470.
Xu, X.W., Zhou, X.H., Wang, R.R., Peng, W.L., An, Y., and Chen, L.L. (2016). Functional analysis of long intergenic non-coding RNAs in phosphate-starved rice using competing endogenous RNA network. Sci Rep 6(1): 20715. doi: 10.1038/srep20715.
Yadav, B., Jogawat, A., Rahman, M.S., and Narayan, O.P. (2021). Secondary metabolites in the drought stress tolerance of crop plants: A review. Gene Rep 23: 101040.
Yoshida, S. (1976). Routine procedures for growing rice plants in culture solution. Laboratory manual for physiological studies of rice: 61-66.
Yoshida, S., and Hasegawa, S. (1982). The rice root system: its development and function. Drought resistance in crops with emphasis on rice 10: 97-134.
Yue, B., Xue, W., Xiong, L., Yu, X., Luo, L., Cui, K., Jin, D., Xing, Y., and Zhang, Q. (2006). Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172(2): 1213-1228.
Zhang, Y., Fan, F., Zhang, Q., Luo, Y., Liu, Q., Gao, J., Liu, J., Chen, G., and Zhang, H. (2022). Identification and functional analysis of long non-coding RNA (lncRNA) in response to seed aging in rice. Plants (Basel) 11(23): 3223. doi: 10.3390/plants11233223.
Zhang, Y.C., Liao, J.Y., Li, Z.Y., Yu, Y., Zhang, J.P., Li, Q.F., Qu, L.H., Shu, W.S., and Chen, Y.Q. (2014). Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15(12): 512. doi: 10.1186/s13059-014-0512-1.
 
Volume 10, Issue 2
December 2022
Pages 31-45
  • Receive Date: 25 July 2023
  • Revise Date: 05 September 2023
  • Accept Date: 19 November 2023
  • First Publish Date: 19 November 2023