Comparison of predicted protein sequences of the omega-3 fatty acid desaturase gene family in some of the oil seed crops

Document Type : Original research paper

Authors

1 Department of Genetic Engineering and Plant Breeding, Imam Khomeini International University, Qazvin, Iran

2 Department of Agronomy, Tarbiat Modares University, Tehran, Iran

3 Department of Plant Production Engineering and Genetics, Zanjan University, Zanjan, Iran

Abstract

The aim of this study was to conduct a comparative analysis of protein-predicted sequences within the omega-3 fatty acid desaturase (FAD) gene family across various oilseed crops, such as cotton, soybean, rapeseed, and corn. Twenty-five omega-3 FAD genes were distinguished by the removal of similar sequences. Phylogenetic analysis of the omega-3 FAD gene family was detected. Omega-3 FAD gene information, and physical parameters including the number of amino acids, chromosome locations, exon count and etc. were obtained. The results showed that the average length of the proteins encoded by the omega-3 fatty acid desaturase proteins was 388.58 amino acid. The molecular weights of these proteins ranged from 22.2 to 51.3 kDa. The phylogenetic tree divided the omega-3 FAD proteins into five clades. Clade 2 comprises the smallest number of omega-3 fatty acid desaturase gene members, whereas clade 1 encompasses the highest number of members. We identified five pairs of orthologous genes among the omega-3 FAD genes and identified a total of twenty distinct conserved motifs. Four of these motifs were associated with encoding the FAD domain, while an additional four were related to the DUF3474 domain. Undoubtedly, characterizing these FADs could offer valuable candidate genes for enhancing new oilseed varieties.

Keywords

Alloatti, A., and Uttaro, A.D. (2011). Highly specific methyl-end fatty-acid desaturases of trypanosomatids. Mol Biochem Parasitol 175(2): 126-132.
Bailey, T.L., and Elkan, C. (1995). "The value of prior knowledge in discovering motifs with MEME", in: Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology July, 1995 (Ismb), 21-29.
Bocianowski, J., Mikołajczyk, K., and Bartkowiak-Broda, I. (2012). Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes. J Appl Genet 53: 27-30.
Bulleid, N.J., and Ellgaard, L. (2011). Multiple ways to make disulfides. Trends Biochem Sci 36(9): 485-492.
Cheng, J., Saigo, H., and Baldi, P. (2006). Large‐scale prediction of disulphide bridges using kernel methods, two‐dimensional recursive neural networks, and weighted graph matching. Proteins: Struct 62(3): 617-629.
Chi, X., Yang, Q., Lu, Y., Wang, J., Zhang, Q., Pan, L., Chen, M., He, Y., and Yu, S. (2011). Genome-wide analysis of fatty acid desaturases in soybean (Glycine max). Plant Mol Biol Rep 29: 769-783.
Clemente, T.E., and Cahoon, E.B. (2009). Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151(3): 1030-1040.
Domínguez, T., Hernández, M.L., Pennycooke, J.C., Jiménez, P., Martínez-Rivas, J.M., Sanz, C., Stockinger, E.J., Sánchez-Serrano, J.J., and Sanmartín, M. (2010). Increasing ω-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiol 153(2): 655-665.
Easton, R., and Leader, T. (2011). Glycosylation of proteins–structure, function and analysis. Life Sci Tech Bull 60: 1-5.
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.e., Wilkins, M.R., Appel, R.D., and Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. Humana press. Springer.
Gupta, R., and Brunak, S. (2001). "Prediction of glycosylation across the human proteome and the correlation to protein function," in PubMed. Pacific Symp. Biocomput.), 310-322.
Guschina, I.A., and Harwood, J.L. (2006). Mechanisms of temperature adaptation in poikilotherms. FEBS Lett 580(23): 5477-5483.
Hernández, M.L., Sicardo, M.D., and Martínez-Rivas, J.M. (2016). Differential contribution of endoplasmic reticulum and chloroplast ω-3 fatty acid desaturase genes to the linolenic acid content of olive (Olea europaea) fruit. Plant Cell Physiol 57(1): 138-151.
Hu, R., Qi, G., Kong, Y., Kong, D., Gao, Q., and Zhou, G. (2010). Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10(1): 145.
Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. J Biol Chem 88(6): 1895-1898.
Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7): 1870-1874.
Kyte, J., and Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1): 105-132.
Liu, W., Li, W., He, Q., Daud, M.K., Chen, J., and Zhu, S. (2015). Characterization of 19 genes encoding membrane-bound fatty acid desaturases and their expression profiles in Gossypium raimondii under low temperature. PloS one 10(4): e0123281.
Lynch, M., and Conery, J.S. (2000). The evolutionary fate and consequences of duplicate genes. Sci 290(5494): 1151-1155.
Magnan, C.N., Randall, A., and Baldi, P. (2009). SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics 25(17): 2200-2207.
Marchler-Bauer, A., Anderson, J.B., Cherukuri, P.F., DeWeese-Scott, C., Geer, L.Y., Gwadz, M., He, S., Hurwitz, D.I., Jackson, J.D., and Ke, Z. (2005). CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33(suppl_1): D192-D196.
Martin, B.A., Schoper, J.B., and Rinne, R.W. (1986). Changes in soybean (Glycine max [L.] Merr.) glycerolipids in response to water stress. Plant Physiol 81(3): 798-801.
Meesapyodsuk, D., and Qiu, X. (2012). The front-end desaturase: structure, function, evolution and biotechnological use. Lipids 47: 227-237.
Ohlrogge, J., and Browse, J. (1995). Lipid biosynthesis. PC 7(7): 957.
Román, Á., Andreu, V., Hernández, M.L., Lagunas, B., Picorel, R., Martínez-Rivas, J.M., and Alfonso, M. (2012). Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean. J Exp Bot 63(13): 4973-4982.
Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4): 406-425.
Shanklin, J., and Cahoon, E.B. (1998). Desaturation and related modifications of fatty acids. Annu Rev Plant Biol 49(1): 611-641.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10): 2731-2739.
Tan, T., Frenkel, D., Gupta, V., and Deem, M.W. (2005). Length, protein–protein interactions, and complexity. Physica A 350(1): 52-62.
Wang, J., Chitsaz, F., Derbyshire, M.K., Gonzales, N.R., Gwadz, M., Lu, S., Marchler, G.H., Song, J.S., Thanki, N., and Yamashita, R.A. (2023). The conserved domain database in 2023. Nucleic Acids Res 51(D1): D384-D388.
Williams, J.P., Khan, M.U., Mitchell, K., and Johnson, G. (1988). The effect of temperature on the level and biosynthesis of unsaturated fatty acids in diacylglycerols of Brassica napus leaves. Plant Physiol 87(4): 904-910.
Yang, Q., Fan, C., Guo, Z., Qin, J., Wu, J., Li, Q., Fu, T., and Zhou, Y. (2012). Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125: 715-729.
Yurchenko, O.P., Park, S., Ilut, D.C., Inmon, J.J., Millhollon, J.C., Liechty, Z., Page, J.T., Jenks, M.A., Chapman, K.D., and Udall, J.A. (2014). Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium. BMC Plant Biol 14(1): 1-15.
Zhang, M., Barg, R., Yin, M., Gueta‐Dahan, Y., Leikin‐Frenkel, A., Salts, Y., Shabtai, S., and Ben‐Hayyim, G. (2005). Modulated fatty acid desaturation via overexpression of two distinct ω‐3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44(3): 361-371.
Volume 11, Issue 1
January 2023
Pages 28-40
  • Receive Date: 01 August 2023
  • Revise Date: 10 October 2023
  • Accept Date: 19 October 2023
  • First Publish Date: 19 October 2023