Magnesium transporter family: sequence, evolution and expression analysis in soybean (Glycine max L.)

Document Type : Original research paper

Authors

Shahrood University of Technology

Abstract

Magnesium transporter (MGT) genes play a critical role in plant growth, development, and stress responses. These genes involve Mg uptake, transport, and distribution within cells and organs. In this study, 48 MGT family members were screened from the soybean genome, and three subfamilies, including MRS2-like (18 members), CorA (3 members), and NIPA (22 members). The length of soybean MGTs ranged from 160 amino acids (aa) (GLYMA_06G214500) to 555 aa (GLYMA_15G125900). The results revealed that NIPA subfamily proteins have more genetic distance than MRS2-like and CorA proteins. In addition, the NIPA subfamily members showed a high variation in physiochemical properties such as theoretical isoelectric point (pI), grand average of hydropathicity (GRAVY), and instability index. All NIPAs were identified as hydrophobic proteins, while the MRS2-like and CorA members were predicted as hydrophilic. Moreover, the instability index revealed that NIPA members are more stable, while more MRS2-like and CorA proteins are predicted to be unstable.  Additionally,, several duplication events were recognized among MGT family members, and all duplicated genes have been created through segmental duplication. The expression profile of soybean MGT genes showed significant differences in expression levels across various s. These results confirm that MGTs’ widespread distribution across organs,  regulating magnesium homeostasis. 

Keywords

Main Subjects

Arab, M., Najafi Zarrini, H., Nematzadeh, G., Heidari, P., Hashemipetroudi, S.H., and Kuhlmann, M. (2023). Comprehensive analysis of calcium sensor families, CBL and CIPK, in Aeluropus littoralis and their expression profile in response to salinity. Genes 14(3): 753.
Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., and Xia, R. (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009.
Chen, J., Li, L.-g., Liu, Z.-h., Yuan, Y.-j., Guo, L.-l., Mao, D.-d., Tian, L.-f., Chen, L.-b., Luan, S., and Li, D.-p. (2009). Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Res 19(7): 887-898.
Chen, Z.C., Peng, W.T., Li, J., and Liao, H. (2018). Functional dissection and transport mechanism of magnesium in plants. Semin Cell Dev Biol 74: 142-152.
Chen, Z.C., Yamaji, N., Horie, T., Che, J., Li, J., An, G., and Ma, J.F. (2017). A Magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol 174(3): 1837-1849. doi: 10.1104/pp.17.00532.
Chen, Z.C., Yamaji, N., Motoyama, R., Nagamura, Y., and Ma, J.F. (2012). Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiol 159(4): 1624-1633.
Deng, W., Luo, K., Li, D., Zheng, X., Wei, X., Smith, W., Thammina, C., Lu, L., Li, Y., and Pei, Y. (2006). Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. J Exp Bot 57(15): 4235-4243. doi: 10.1093/jxb/erl201.
Drummond, R., Tutone, A., Li, Y.-C., and Gardner, R. (2006). A putative magnesium transporter AtMRS2-11 is localized to the plant chloroplast envelope membrane system. Plant Sci 170(1): 78-89.
Faraji, S., Ahmadizadeh, M., and Heidari, P. (2021). Genome-wide comparative analysis of Mg transporter gene family between Triticum turgidum and Camelina sativa. BioMetals 34: 639-660.
Faraji, S., Filiz, E., Kazemitabar, S.K., Vannozzi, A., Palumbo, F., Barcaccia, G., and Heidari, P. (2020). The ap2/erf gene family in Triticum durum: genome-wide identification and expression analysis under drought and salinity stresses. Genes (Basel) 11(12): 1464. doi: 10.3390/genes11121464.
Franken, G.A.C., Huynen, M.A., Martinez-Cruz, L.A., Bindels, R.J.M., and de Baaij, J.H.F. (2022). Structural and functional comparison of magnesium transporters throughout evolution. Cell Mol Life Sci 79(8): 418. doi: 10.1007/s00018-022-04442-8.
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.e., Wilkins, M.R., Appel, R.D., and Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. Springer.
Ge, M., Zhong, R., Sadeghnezhad, E., Hakeem, A., Xiao, X., Wang, P., and Fang, J. (2022). Genome-wide identification and expression analysis of magnesium transporter gene family in grape (Vitis vinifera). BMC Plant Biol 22(1): 217. doi: 10.1186/s12870-022-03599-5.
Gebert, M., Meschenmoser, K., Svidova, S., Weghuber, J., Schweyen, R., Eifler, K., Lenz, H., Weyand, K., and Knoop, V. (2009). A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. Plant Cell 21(12): 4018-4030. doi: 10.1105/tpc.109.070557.
Hashemipetroudi, S.H., Arab, M., Heidari, P., and Kuhlmann, M. (2023). Genome-wide analysis of the laccase (LAC) gene family in Aeluropus littoralis: A focus on identification, evolution and expression patterns in response to abiotic stresses and ABA treatment. Front Plant Sci 14: 1112354. doi: 10.3389/fpls.2023.1112354.
Heidari, P., Abdullah, Faraji, S., and Poczai, P. (2021). Magnesium transporter gene family: genome-wide identification and characterization in Theobroma cacao, Corchorus capsularis, and Gossypium hirsutum of family Malvaceae. Agronomy 11(8): 1651.
Heidari, P., Puresmaeli, F., and Mora-Poblete, F. (2022). Genome-wide identification and molecular evolution of the magnesium transporter (MGT) gene family in Citrullus lanatus and Cucumis sativus. Agronomy 12(10): 2253.
Knoop, V., Groth-Malonek, M., Gebert, M., Eifler, K., and Weyand, K. (2005). Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol Genet Genom 274(3): 205-216. doi: 10.1007/s00438-005-0011-x.
Ko, Y.H., Hong, S., and Pedersen, P.L. (1999). Chemical mechanism of ATP synthase: magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate. J Biol Chem 274(41): 28853-28856.
Lenz, H., Dombinov, V., Dreistein, J., Reinhard, M.R., Gebert, M., and Knoop, V. (2013). Magnesium deficiency phenotypes upon multiple knockout of Arabidopsis thaliana MRS2 clade B genes can be ameliorated by concomitantly reduced calcium supply. Plant Cell Physiol 54(7): 1118-1131.
Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze, P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1): 325-327. doi: 10.1093/nar/30.1.325.
Letunic, I., and Bork, P. (2021). Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49(W1): W293-W296. doi: 10.1093/nar/gkab301.
Li, H., Du, H., Huang, K., Chen, X., Liu, T., Gao, S., Liu, H., Tang, Q., Rong, T., and Zhang, S. (2016). Identification, and functional and expression analyses of the CorA/MRS2/MGT-Type magnesium transporter family in Maize. Plant Cell Physiol 57(6): 1153-1168. doi: 10.1093/pcp/pcw064.
Lin, D.C., and Nobel, P.S. (1971). Control of photosynthesis by Mg2+. Archives of biochemistry and biophysics 145(2): 622-632.
Liu, X., Guo, L.X., Luo, L.J., Liu, Y.Z., and Peng, S.A. (2019). Identification of the magnesium transport (MGT) family in Poncirus trifoliata and functional characterization of PtrMGT5 in magnesium deficiency stress. Plant Mol Biol 101(6): 551-560. doi: 10.1007/s11103-019-00924-9.
Mao, D., Chen, J., Tian, L., Liu, Z., Yang, L., Tang, R., Li, J., Lu, C., Yang, Y., and Shi, J. (2014). Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. The Plant Cell 26(5): 2234-2248.
Mohamadi, S.F., Babaeian Jelodar, N., Bagheri, N., Nematzadeh, G., and Hashemipetroudi, S.H. (2023). New insights into comprehensive analysis of magnesium transporter (MGT) gene family in rice (Oryza sativa L.). 3 Biotech 13(10): 322.
Palombo, I., Daley, D.O., and Rapp, M. (2013). Why is the GMN motif conserved in the CorA/Mrs2/Alr1 superfamily of magnesium transport proteins? Biochem 52(28): 4842-4847.
Puresmaeli, F., Heidari, P., and Lawson, S. (2023). Insights into the sulfate transporter gene family and its expression patterns in durum wheat seedlings under salinity. Genes 14(2): 333.
Regon, P., Chowra, U., Awasthi, J.P., Borgohain, P., and Panda, S.K. (2019). Genome-wide analysis of magnesium transporter genes in Solanum lycopersicum. Comput Biol Chem 80: 498-511. doi: 10.1016/j.compbiolchem.2019.05.014.
Schock, I., Gregan, J., Steinhauser, S., Schweyen, R., Brennicke, A., and Knoop, V. (2000). A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J 24(4): 489-501. doi: 10.1046/j.1365-313x.2000.00895.x.
Sievers, F., and Higgins, D.G. (2014). Clustal omega. Curr Protoc Bioinformatics 48(1): 3.13. 11-13.13. 16.
Silver, S. (1969). Active transport of magnesium in escherichia coli. Proc Natl Acad Sci U S A 62(3): 764-771. doi: 10.1073/pnas.62.3.764.
Wang, Y., Hua, X., Xu, J., Chen, Z., Fan, T., Zeng, Z., Wang, H., Hour, A.L., Yu, Q., Ming, R., and Zhang, J. (2019). Comparative genomics revealed the gene evolution and functional divergence of magnesium transporter families in Saccharum. BMC Genom 20(1): 83. doi: 10.1186/s12864-019-5437-3.
 
Volume 11, Issue 1
January 2023
Pages 62-73
  • Receive Date: 10 January 2024
  • Revise Date: 28 January 2024
  • Accept Date: 31 January 2024
  • First Publish Date: 31 January 2024