Germplasm genetic diversity & plant breeding
Aliakbar Babajanpour; SeyedHamidreza Hashemipetroudi; Mostafa Haghpanah
Abstract
Assessment of genetic diversity and individual relationships in rice (Oryza sativa) germplasm collections seems to be necessary for future rice breeding program. In order to understand genetic relationships of 30 rice genotypes, nine morphological traits, seven physicochemical properties and twelve RAPD ...
Read More
Assessment of genetic diversity and individual relationships in rice (Oryza sativa) germplasm collections seems to be necessary for future rice breeding program. In order to understand genetic relationships of 30 rice genotypes, nine morphological traits, seven physicochemical properties and twelve RAPD primers were used for study of 30 rice genotypes. Among morphological traits, number of unfilled grain, number of tiller, number of filled grain and plant height had the highest CV value that indicated the high range of genetic diversity for studied genotypes. Pairwise correlation of morphological traits and physicochemical properties showed plant height had a strong positive correlation with panicle length (r = 0.721, P< 0.0001). Also, ratio of white rice to paddy rice and milling ratio had a negative correlation with plant height and 1000-grain weight, respectively. Cluster analysis of physicochemical properties and morphological traits grouped all genotypes into three main clusters. A total of 105 obtained RAPD bands, a number of 35 bands were polymorphs which range 7 to 19 bands per primer. OPB-14 and OPH-12 primers shown that lowest and the highest number of bands per primers, respectively. Cluster analysis of molecular data based on UPGMA algorithm and Jaccard's similarity coefficient grouped 30 rice genotypes into three clusters. The findings of this study might provide valuable information about local rice cultivar relationships in terms of their genetic distance, and can be useful in rice breeding program.
Solmaz Eimer; hossein sabouri; Leila Ahangar; Abdollatif Gholizadeh
Abstract
The present research aims to study the association and allelic diversity of linked microsatellite markers to grain quality QTLs of 84 exotic rice genotypes. To this end, 9 microsatellite markers (RM540, RM539, RM587, RM527, RM216, RM467, RM3188, RM246, RM5461) were used in which a total of 61 alleles ...
Read More
The present research aims to study the association and allelic diversity of linked microsatellite markers to grain quality QTLs of 84 exotic rice genotypes. To this end, 9 microsatellite markers (RM540, RM539, RM587, RM527, RM216, RM467, RM3188, RM246, RM5461) were used in which a total of 61 alleles were identified with a mean of 6 alleles per locus. The polymorphism information content (PIC) varied from 0.542 (RM540) to 0.812 (RM3188) for SSR markers. Cluster analysis was performed using UPGMA method and genotypes were divided into five groups. Furthermore, based on regression analysis, for rice grain quality properties in flooding conditions as long as drought stresses, 10 alleles were identified. Of these, four alleles with gelatinization temperature, an allele with protein content under flooding conditions, and three alleles with protein content and three alleles with gelatinization temperature were related under drought stress. It should be noted that the RM216-C and RM5461-D alleles were commonly identified in several traits. The presence of common markers for traits is probably due to the consistency of chromosomal locus controlling these traits or pleiotropy. The results of this study may imply that the important identified alleles for example RM216-A for gelatinization temperature (R2=30.1 %) can be used in rice quality improvement programs.
Molecular markers & plant breeding
Mostafa Haghpanah; Seyed Kamal Kazemitabar; Seyed Hamidreza Hashemi; Seyed Mohammad Alavi
Abstract
Urtica dioica is an important medicinal plant which is widely distributed in Mazandaran province (North of Iran). In this study for the first time Amplified Fragment Length Polymorphism (AFLP) and Inter-simple Sequence Repeat (ISSR) markers were used for detection of genetic polymorphism in Mazandaran ...
Read More
Urtica dioica is an important medicinal plant which is widely distributed in Mazandaran province (North of Iran). In this study for the first time Amplified Fragment Length Polymorphism (AFLP) and Inter-simple Sequence Repeat (ISSR) markers were used for detection of genetic polymorphism in Mazandaran nettle. Ten AFLP primer combinations and seventeen ISSR markers were utilized. AFLP produced 830 scorable bands out of which 90.21% were polymorphic. ISSR primers amplified 234 bands, 181 being polymorphic (77.3%). Average heterozygosity for AFLP and ISSR markers were 0.25, 0.23 respectively. Marker Index obtains 22.25 for AFLP and 15.57 for ISSR. The number of cluster computed was same for both molecular makers but location of samples in branch were different. The total compare of these two marker systems shown AFLP marker was a useful tool for detection of U. dioica’sgenetic diversity. This plant is very variable and is genetically distinct in east, west and north of Mazandaran.
Molecular markers & plant breeding
Nader Eyvaznejad; Reza Darvishzadeh
Abstract
Many agriculturally important traits are complex, affected by many genes and the environment. Quantitative trait loci (QTL) mapping is a key tool for studying the genetic structure of complex traits in plants. In the present study QTLs associated with yield and agronomical traits such as leaf number, ...
Read More
Many agriculturally important traits are complex, affected by many genes and the environment. Quantitative trait loci (QTL) mapping is a key tool for studying the genetic structure of complex traits in plants. In the present study QTLs associated with yield and agronomical traits such as leaf number, leaf length, leaf width, plant height, stem and head diameter were identified by using 70 recombinant inbred lines (RILs) from the cross (♀) PAC2 × RHA266(♂). RILs and their parents were evaluated in a rectangular 8´9 lattice design with two replications. High genetic variability and transgressive segregation were observed in all studied traits. Genetic gain representing the difference between 10% of selected RILs and their parents was significant for most of the studied traits. Positive and significant genotypic and phenotypic correlations were observed among the studied traits. QTL analysis was performed using a recently developed SSR and SNP sunflower linkage map. The map consists of 210 SSRs and 11 SNP markers placed in 17 linkage groups (LGs). The total map length is 1,653.1 cM with a mean density of 1 marker per 7.44 cM. Composite interval mapping (CIM) procedure detected 21 QTLs involved in genetic control of studied traits. The phenotypic variance explained by the identified QTLs varied from 1.13 to 73.70%. QTLs such as HMBPP associated with the expression of more than one trait could increase the efficiency of marker-assisted selection (MAS) and genetic progress in sunflower.