Document Type : Research Paper


1 Department of Agronomy and Plant Breeding, College of Abouraihan University of Tehran, Iran

2 Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran


Low-phosphorus (P) stress as a key factor limiting plant growth and production is common in most agricultural soils. Most of the soil-applied phosphate will be rapidly immobilized and most of annually applied phosphate fertilizers are fixed in the soil in organic forms by adsorption, sedimentation and transformation. However, excess P application may lead to contamination of water sources by enriching of water bodies with nutrients that cause eutrophication. Thus understanding the mechanisms that are used by plants to cope with low-P stress will be supportive to develop more competent breeding and genetic engineering schemes for generating improved phosphorus efficient crops. To cope with P deficiency and maintenance of phosphate homeostasis, plants have developed different adaptive mechanisms, including alterations in root morphology, recycling of inorganic phosphate (Pi) and induction of acid phosphatases (APases). To establish these strategies, numerous genes are involved in alternative metabolism pathways that are regulated by complex Pi signaling networks. In this review, we intend to summarize current advances in research on the mechanisms of P efficient crops and its breeding strategies, with a particular emphasis on APase and root architecture roles in response to low-P stress.


Main Subjects

[1]      Ai, P., Sun, S., Zhao, J., Fan, X., Xin, W., Guo, Q., Yu, L., Shen, Q., Wu, P., Miller, A.J. and Xu, G. 2009. Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6, have different functions and kinetic properties in uptake and translocation. The Plant Journal, 57(5): 798-809.
 [2]     Antonyuk, S.V., Olczak, M., Olczak, T., Ciuraszkiewicz, J. and Strange, R.W. 2014. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold. IUCrJ, 1(2): 101- 109.
 [3]     Araújo, A.P., Plassard, C. and Drevon, J.J. 2008. Phosphatase and phytase activities in nodules of common bean genotypes at different levels of phosphorus supply. Plant and soil, 312(1-2): 129-138.
 [4]     Baldwin, J.C., Karthikeyan, A.S. and Raghothama, K.G. 2001. LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiology, 125(2): 728-737.
 [5]     Bargaz, A., Ghoulam, C. and Drevon, J.J. 2013. Specific expression and activity of acid phosphatases in common bean nodules. Plant signaling & behavior, 8(8).
 [6]     Bargaz, A., Ghoulam, C., Amenc, L., Lazali, M., Faghire, M., Abadie, J. and Drevon, J.J. 2012. A phosphoenol pyruvate phosphatase transcript is induced in the root nodule cortex of Phaseolus vulgaris under conditions of phosphorus deficiency. Journal of experimental botany.
 [7]     Bargaz, A., Lazali, M., Amenc, L., Abadie, J., Ghoulam, C., Farissi, M., Faghire, M. and Drevon, J.J. 2013. Differential expression of trehalose 6-P phosphatase and ascorbate peroxidase transcripts in nodule cortex of Phaseolus vulgaris and regulation of nodule O2 permeability. Planta, 238(1): 107-119.
 [8]     Bozzo, G.G., Dunn, E.L. and Plaxton, W.C. 2006. Differential synthesis of phosphate‐starvation inducible purple acid phosphatase isozymes in tomato (Lycopersicon esculentum) suspension cells and seedlings. Plant, cell & environment, 29(2): 303-313.
 [9]     Calderón-Vázquez, C., Sawers, R.J. and Herrera-Estrella, L. 2011. Phosphate deprivation in maize: genetics and genomics. Plant physiology, 156 (3): 1067-1077.
 [10]   Chen Z.H., Nimmo G.A., Jenkins G.I. and Nimmo H.G. 2007 BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem J, 405: 191–8.
 [11]   Del Pozo, J.C., Allona, I., Rubio, V., Leyva, A., De La Peña, A., Aragoncillo, C. and Paz‐Ares, J. 1999. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. The Plant Journal, 19(5): .579-589.
 [12]   Deng, L., Chen, F., Jiang, L., Lam, H.M. and Xiao, G. 2014. Ectopic expression of GmPAP3 enhances salt tolerance in rice by alleviating oxidative damage. Plant Breeding, 133(3): 348-355.
 [13]   Deng, M., Hu, B., Xu, L., Liu, Y., Wang, F., Zhao, H., Wei, X., Wang, J. and Yi, K. 2014. OsCYCP1;1, a PHO80 homologous protein, negatively regulates phosphate starvation signaling in the roots of rice (Oryza sativa L.). Plant molecular biology, 86(6): 655-669.
 [14]   Devaiah, B.N., Karthikeyan, A.S. and Raghothama, K.G. 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology, 143(4): 1789-1801.
 [15]   Dionisio, G., Madsen, C.K., Holm, P.B., Welinder, K.G., Jørgensen, M., Stoger, E., Arcalis, E. and Brinch-Pedersen, H. 2011. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant physiology, 156(3): 1087-1100.
 [16]   Dong, D., Peng, X. and Yan, X. 2004. Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiologia Plantarum, 122(2): 190-199.
 [17]   Dorsch, J.A., Cook, A., Young, K.A., Anderson, J.M., Bauman, A.T., Volkmann, C.J., Murthy, P.P. and Raboy, V., 2003. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes.Phytochemistry, 62(5),: 691-706.
 [18]   Fan, C., Wang, X., Hu, R., Wang, Y., Xiao, C., Jiang, Y., Zhang, X., Zheng, C. and Fu, Y.F. 2013. The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L. BMC plant biology, 13(1), p.48.
 [19]   Gamuyao, R., Chin, J.H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S., Dalid, C., Slamet-Loedin, I., Tecson-Mendoza, E.M., Wissuwa, M. and Heuer, S. 2012. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature, 488(7412): 535-539.
 [20]   Gaxiola, R.A., Edwards, M. and Elser, J.J. 2011. A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture. Chemosphere, 84(6): 840-845.
 [21]   González-Mendoza, V., Zurita-Silva, A., Sánchez-Calderón, L., Sánchez-Sandoval, M.E., Oropeza-Aburto, A., GutiérrezAlanís, D., Alatorre-Cobos, F. and Herrera-Estrella, L. 2013. APSR1, a novel gene required for meristem maintenance, is negatively regulated by low phosphate availability. Plant Science, 205: 2-12.
 [22]   González-Muñoz, E., Avendaño-Vázquez, A.O., Montes, R.A.C., De Folter, S., Andrés-Hernández, L., AbreuGoodger, C. and Sawers, R.J. 2015. The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family. Frontiers in Plant Science, 6, p.341.
 [23]   Gruber, B.D., Giehl, R.F., Friedel, S. and von Wirén, N. 2013. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology, 163 (1): 161-179.
 [24]   Guo, W., Zhao, J., Li, X., Qin, L., Yan, X. and Liao, H. 2011. A soybean β‐expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. The Plant Journal, 66(3): 541-552.
 [25]   Ha, S. and Tran, L.S. 2014. Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Critical reviews in biotechnology, 34(1): 16-30.
 [26]   Hodge, A. 2004. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162(1): 9-24.
 [27]   Hur, Y.J., Jin, B.R., Nam, J., Chung, Y.S., Lee, J.H., Choi, H.K., Yun, D.J., Yi, G., Kim, Y.H. and Kim, D.H. 2010. Molecular characterization of OsPAP2: transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells. Biotechnology letters, 32(1): 163-170.
 [28]   Kaida, R., Satoh, Y., Bulone, V., Yamada, Y., Kaku, T., Hayashi, T. and Kaneko, T.S. 2009. Activation of β-glucan synthases by wall-bound purple acid phosphatase in tobacco cells. Plant physiology, 150(4): 1822-1830.
 [29]   Kaida, R., Serada, S., Norioka, N., Norioka, S., Neumetzler, L., Pauly, M., Sampedro, J., Zarra, I., Hayashi, T. and Kaneko, T.S. 2010. Potential role for purple acid phosphatase in the dephosphorylation of wall proteins in tobacco cells. Plant physiology, 153(2): 603-610.
 [30]   Kellermeier, F., Armengaud, P., Seditas, T.J., Danku, J., Salt, D.E. and Amtmann, A. 2014. Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. The Plant Cell, 26(4): 1480-1496.
 [31]   Kochian, L.V., Hoekenga, O.A. and Piñeros, M.A. 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annu. Rev. Plant Biol., 55: 459-493.
 [32]   Kong, Y., Li, X., Ma, J., Li, W., Yan, G. and Zhang, C. 2014. GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana. Plant cell reports, 33(4): 655-667.
 [33]   Lazali, M., Zaman-Allah, M., Amenc, L., Ounane, G., Abadie, J. and Drevon, J.J. 2013. A phytase gene is overexpressed in root nodules cortex of Phaseolus vulgaris– rhizobia symbiosis under phosphorus deficiency. Planta, 238(2): 317-324.
 [34]   Li, C., Gui, S., Yang, T., Walk, T., Wang, X. and Liao, H. 2012. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Annals of botany, 109(1): 275- 285.
 [35]   Li, R.J., Lu, W.J., Guo, C.J., Li, X.J., Gu, J.T. and Kai, X.I.A.O. 2012. Molecular Characterization and Functional Analysis of OsPHY1, a Purple Acid Phosphatase (PAP)– Type Phytase Gene in Rice (Oryza sativa L.).Journal of Integrative Agriculture, 11(8): 1217-1226.
 [36]   Li, W.Y.F., Shao, G. and Lam, H.M. 2008. Ectopic expression of GmPAP3 alleviates oxidative damage caused by salinity and osmotic stresses. New Phytologist, 178(1): 80- 91.
 [37]   Li, Z., Gao, Q., Liu, Y., He, C., Zhang, X. and Zhang, J. 2011. Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta, 233(6): 1129-1143.
 [38]   Li, Z., Xu, C., Li, K., Yan, S., Qu, X. and Zhang, J. 2012. Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone. BMC plant biology, 12(1), p.89.
 [39]   Liang, C., Sun, L., Yao, Z., Liao, H. and Tian, J. 2012. Comparative analysis of PvPAP gene family and their functions in response to phosphorus deficiency in common bean. PloS one, 7(5): e38106-e38106.
 [40]   Liang, C.Y., Chen, Z.J., Yao, Z.F., Tian, J. and Liao, H., 2012. Characterization of Two Putative Protein Phosphatase Genes and Their Involvement in Phosphorus Efficiency in Phaseolus vulgaris F. Journal of integrative plant biology, 54(6): 400-411.
 [41]   Liao, H., Wan, H., Shaff, J., Wang, X., Yan, X. and Kochian, L.V. 2006. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiology, 141(2): 674-684.
 [42]   Liao, H., Wong, F.L., Phang, T.H., Cheung, M.Y., Li, W.Y.F., Shao, G., Yan, X. and Lam, H.M. 2003. GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency.Gene, 318: 103- 111.
 [43]   Liu J., Versaw W.K., Pumplin N., Gomez S.K., Blaylock L.A., Harrison M.J. 2008. Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. J. Biol. Chem. 283:24673–81.
 [44]   Liu, J., Samac, D.A., Bucciarelli, B., Allan, D.L. and Vance, C.P. 2005. Signaling of phosphorus deficiency‐induced gene expression in white lupin requires sugar and phloem transport. The Plant Journal, 41(2): 257-268.
 [45]   López-Arredondo, D.L., Leyva-González, M.A., GonzálezMorales, S.I., López-Bucio, J. and Herrera-Estrella, L. 2014. Phosphate nutrition: improving low-phosphate tolerance in crops. Annual review of plant biology,65: 95-123.
 [46]   López-Bucio, J., Cruz-Ramı́rez, A. and Herrera-Estrella, L. 2003. The role of nutrient availability in regulating root architecture. Current opinion in plant biology, 6(3), 280-287.
[47]    Mehra, P., Pandey, B.K. and Giri, J. 2015. Genome-wide DNA polymorphisms in low Phosphate tolerant and sensitive rice genotypes.Scientific reports, 5.
 [48]   Nacry, P., Canivenc, G., Muller, B., Azmi, A., Van Onckelen, H., Rossignol, M. and Doumas, P. 2005. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiology, 138(4): 2061-2074.
 [49]   Nagarajan, V.K., Jain, A., Poling, M.D., Lewis, A.J., Raghothama, K.G. and Smith, A.P., 2011. Arabidopsis Pht1; 5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiology, 156(3): 1149-1163.
 [50]   Nagy, R., Vasconcelos, M.J.V., Zhao, S., McElver, J., Bruce, W., Amrhein, N., Raghothama, K.G. and Bucher, M. 2006.Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biology, 8(2): 186-197.
 [51]   Nations FAO .2011. Current world fertilizer trends and outlook to 2015; Rome. Available: em/ 93486/icode/en/. Accessed 5 December 2013.
 [52]   Péret, B., De Rybel, B., Casimiro, I., Benková, E., Swarup, R., Laplaze, L., Beeckman, T. and Bennett, M.J. 2009. Arabidopsis lateral root development: an emerging story. Trends in plant science, 14(7): 399-408.
 [53]   Péret, B., Desnos, T., Jost, R., Kanno, S., Berkowitz, O. and Nussaume, L. 2014. Root architecture responses: in search of phosphate. Plant physiology, 166(4): 1713-1723.
 [54]   Pérez-Torres, C.A., López-Bucio, J., Cruz-Ramírez, A., Ibarra-Laclette, E., Dharmasiri, S., Estelle, M. and HerreraEstrella, L. 2008. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. The Plant Cell, 20(12): 3258-3272.
 [55]   Plaxton, W.C. and Shane, M.W. 2015. The role of posttranslational enzyme modifications in the metabolic adaptations of phosphorus-deprived plants.Phosphorus Metabolism in Plants. Annual Plant Reviews. Oxford: WileyBlackwell, 48: 99-124.
 [56]   Plaxton, W.C. and Tran, H.T. 2011. Metabolic adaptations of phosphate-starved plants. Plant Physiology, 156(3): 1006- 1015.
 [57]   Raghothama, K.G. and Karthikeyan, A.S. 2005. Phosphate acquisition. InRoot Physiology: from Gene to Function (pp. 37-49). Springer Netherlands.
 [58]   Ravichandran, S., Stone, S.L., Benkel, B. and Prithiviraj, B. 2013. Purple Acid Phosphatase5 is required for maintaining basal resistance against Pseudomonas syringae in Arabidopsis. BMC plant biology, 13(1), p.107.
 [59]   Ravichandran, S., Stone, S.L., Benkel, B., Zhang, J., Berrue, F. and Prithiviraj, B. 2015. Optimal level of purple acid phosphatase5 is required for maintaining complete resistance to Pseudomonas syringae. Frontiers in plant science, 6.
 [60]   Roussis, A., Flemetakis, E., Dimou, M., Kavroulakis, N., Venieraki, A., Aivalakis, G. and Katinakis, P. 2003. Nodulin PvNOD33, a putative phosphatase whose expression is induced during Phaseolus vulgaris nodule development. Plant Physiology and Biochemistry, 41(8): 719-725.
 [61]   Rubio, V., Linhares, F., Solano, R., Martín, A.C., Iglesias, J., Leyva, A. and Paz-Ares, J. 2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & development, 15(16): 2122-2133.
 [62]   Sánchez-Calderón, L., López-Bucio, J., Chacón-López, A., Cruz-Ramírez, A., Nieto-Jacobo, F., Dubrovsky, J.G. and Herrera-Estrella, L. 2005. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant and Cell Physiology, 46(1): 174- 184.
 [63]   Sano, A., Kaida, R., Maki, H. and Kaneko, T.S., 2003. Involvement of an acid phosphatase on cell wall regeneration of tobacco protoplasts. Physiologia Plantarum, 119(1): 121- 125.
 [64]   Sarikhani, M.R., Malboobi, M.A., Aliasgharzad, N., Greiner, R. and Yakhchali, B. 2010. Functional screening of phosphatase-encoding genes from bacterial sources. Iran. J. Biotech, 8(4): 275-279.
 [65]   Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S.J., Ryan, P.R., Delhaize, E. and Matsumoto, H. 2004. A wheat gene encoding an aluminum‐activated malate transporter. The Plant Journal, 37(5): 645-653.
 [66]   Schunmann P.H.D., Richardson A.E., Smith F.W., Delhaize E. 2004. Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J. Exp. Bot. 55:855–65.
 [67]   Secco, D., Baumann, A. and Poirier, Y. 2010. Characterization of the rice PHO1 gene family reveals a key role for OsPHO1; 2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons. Plant Physiology, 152(3): 1693-1704.
 [68]   Shane, M.W., Stigter, K., Fedosejevs, E.T. and Plaxton, W.C. 2014. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae). Journal of experimental botany, 65(20): 6097-6106.
 [69]   Shen, C., Wang, S., Zhang, S., Xu, Y., Qian, Q., Qi, Y. and Jiang, D.A. 2013. OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.). Plant, cell & environment, 36(3): 607-620.
 [70]   Shinano, T., Yoshimura, T., Watanabe, T., Unno, Y., Osaki, M., Nanjo, Y. and Komatsu, S. 2013. Effect of phosphorus levels on the protein profiles of secreted protein and root surface protein of rice. Journal of proteome research, 12(11): 4748-4756.
 [71]   Soleimani, V., Ahmadi, J., Golkari, S. and Sadeghzadeh, B. 2015. Expression profiling of PAP3, BZIP, and P5CS genes in soybean underdrought stress conditions. Turkish Journal of Botany, 39(6): 952-961.
 [72]   Sulieman, S. and Tran, L.S.P. 2015. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Science,239: 36-43.
 [73]   Svistoonoff, S., Creff, A., Reymond, M., Sigoillot-Claude, C., Ricaud, L., Blanchet, A., Nussaume, L. and Desnos, T. 2007. Root tip contact with low-phosphate media reprograms plant root architecture. Nature genetics, 39(6): 792-796.
 [74]   Tawaraya, K., Horie, R., Shinano, T., Wagatsuma, T., Saito, K. and Oikawa, A. 2014. Metabolite profiling of soybean root exudates under phosphorus deficiency. Soil Science and Plant Nutrition, 60(5): 679-694.
 [75]   Tian, J. and Liao, H. 2015. The Role of Intracellular and Secreted Purple Acid Phosphatases in Plant Phosphorus Scavenging and Recycling. Annual Plant Reviews, Phosphorus Metabolism in Plants, 48: 265.
 [76]   Tian, J., Wang, C., Zhang, Q., He, X., Whelan, J. and Shou, H. 2012. Overexpression of OsPAP10a, a root‐associated acid phosphatase, increased extracellular organic phosphorus utilization in rice. Journal of integrative plant biology, 54(9): 631-639.
 [77]   Ticconi, C.A. and Abel, S. 2004. Short on phosphate: plant surveillance and countermeasures. Trends in plant science, 9(11): 548-555.
 [78]   Ticconi, C.A., Lucero, R.D., Sakhonwasee, S., Adamson, A.W., Creff, A., Nussaume, L., Desnos, T. and Abel, S., 2009. ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proceedings of the National Academy of Sciences,106(33): 14174-14179.
 [79]   Todd, C.D., Zeng, P., Huete, A.M.R., Hoyos, M.E. and Polacco, J.C. 2004. Transcripts of MYB-like genes respond to phosphorus and nitrogen deprivation in Arabidopsis. Planta, 219(6): 1003-1009.
 [80]   Tomscha, J.L., Trull, M.C., Deikman, J., Lynch, J.P. and Guiltinan, M.J. 2004. Phosphatase under-producer mutants have altered phosphorus relations. Plant physiology, 135(1): 334-345.
 [81]   Tran, H.T., Qian, W., Hurley, B.A., SHE, Y.M., Wang, D. and Plaxton, W.C. 2010. Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate starved Arabidopsis thaliana. Plant, cell & environment, 33(11): 1789-1803.
 [82]   Tsvetkova, G.E. and Georgiev, G.I. 2007. Changes in phosphate fractions extracted from different organs of phosphorus starved nitrogen fixing pea plants. Journal of plant nutrition, 30(12): 2129-2140.
 [83]   Wang X, Yan X, Liao H (2010) Genetic improvement for phosphorus efficiency in soybean: a radical approach. Ann Bot 215-22.
 [84]   Wang, H., Xu, Q., Kong, Y.H., Chen, Y., Duan, J.Y., Wu, W.H. and Chen, Y.F. 2014. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1; 1 expression in response to phosphate starvation. Plant physiology, 164(4): 2020-2029.
 [85]   Wang, J., Sun, J., Miao, J., Guo, J., Shi, Z., He, M., Chen, Y., Zhao, X., Li, B., Han, F. and Tong, Y. 2013. A wheat phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat. Annals of botany, p.mct080.
 [86]   Wang, L., Lu, S., Zhang, Y., Li, Z., Du, X. and Liu, D. 2014. Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation. Journal of integrative plant biology, 56(3): 299- 314.
 [87]   Wang, X., Pan, Q., Chen, F., Yan, X. and Liao, H. 2011. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza, 21(3): 173-181.
 [88]   Wang, X., Wang, Y., Tian, J., Lim, B.L., Yan, X. and Liao, H. 2009. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiology, 151(1): 233-240.
[89]    White, P.J. and Hammond, J. eds. 2008. The ecophysiology of plant-phosphorus interactions (pp. 83-93). Dordrecht, The Netherlands: Springer.
 [90]   Williamson, L.C., Ribrioux, S.P., Fitter, A.H. and Leyser, H.O. 2001. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 126(2): 875- 882.
 [91]   Willmann, M., Gerlach, N., Buer, B., Polatajko, A., Nagy, R., Koebke, E., Jansa, J., Flisch, R. and Bucher, M., 2013. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Frontiers in plant science, 4.
 [92]   Wu, P., Shou, H., Xu, G. and Lian, X. 2013. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Current opinion in plant biology, 16(2): 205-212.
 [93]   Xiao, K., Harrison, M.J. and Wang, Z.Y. 2005. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta, 222(1): 27-36.
 [94]   Xiao, K., Katagi, H., Harrison, M. and Wang, Z.Y., 2006. Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from M. truncatula. Plant Science, 170(2): 191-202.
 [95]   Xie, J., Zhou, J., Wang, X. and Liao, H. 2015. Effects of transgenic soybean on growth and phosphorus acquisition in mixed culture system.Journal of integrative plant biology, 57(5): 477-485.
 [96]   Xu, L., Jin, L., Long, L., Liu, L., He, X., Gao, W., Zhu, L. and Zhang, X., 2012. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis. Plant cell reports,31(12): 2177-2188.
 [97]   Yan, X., Liao, H., Beebe, S.E., Blair, M.W. and Lynch, J.P. 2004. QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant and soil, 265(1-2): 17-29.
 [98]   Yao, Z.F., Liang, C.Y., Zhang, Q., Chen, Z.J., Xiao, B.X., Tian, J. and Liao, H. 2014. SPX1 is an important component in the phosphorus signalling network of common bean regulating root growth and phosphorus homeostasis. Journal of experimental botany, 65(12): 3299-3310.
 [99]   Yi, K., Wu, Z., Zhou, J., Du, L., Guo, L., Wu, Y. and Wu, P. 2005. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant physiology, 138(4): 2087-2096.
 [100] Zamani, K., Sabet, M., Lohrasebi, T., Mousavi, A. and Malboobi, M. 2012. Improved phosphate metabolism and biomass production by overexpression of AtPAP18 in tobacco. Biologia, 67(4): 713-720.
 [101] Zhang, D., Song, H., Cheng, H., Hao, D., Wang, H., Kan, G., Jin, H. and Yu, D., 2014. The acid phosphataseencoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genet, 10(1), p.e1004061.
 [102] Zhang, Q., Wang, C., Tian, J., Li, K. and Shou, H., 2011. Identification of rice purple acid phosphatases related to posphate starvation signalling. Plant Biology, 13(1): 7-15.
 [103] Zhang, W., Gruszewski, H.A., Chevone, B.I. and Nessler, C.L. 2008. An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant physiology, 146(2): 431-440.
 [104] Zhang, Y.M., Yan, Y.S., Wang, L.N., Yang, K., Xiao, N., Liu, Y.F., Fu, Y.P., Sun, Z.X., Fang, R.X. and Chen, X.Y. 2012. A novel rice gene, NRR responds to macronutrient deficiency and regulates root growth. Molecular plant, 5(1): 63-72.
 [105] Zhang, Z., Liao, H. and Lucas, W.J. 2014. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. Journal of integrative plant biology, 56(3): 192-220.
 [106] Zimmermann, P., Regierer, B., Kossmann, J., Frossard, E., Amrhein, N. and Bucher, M. 2004. Differential expression of three purple acid phosphatases from potato. Plant Biology, 6(5): 519-528