Metabolic profiling and inhibitory properties of different parts of Salsola vermiculata against acetylcholinesterase and α-glucosidase

Document Type : Original research paper


1 Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran

2 Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran


Herbal plants play significant roles in the treatment of diseases and development of novel drugs. Salsola vermiculata is an annual plant which is broadly distributed in the southwest Asia, and used for the treatment of stomach disorders. This present study aimed at identifying and comparing the metabolic profiles of different parts of S. vermiculata and evaluating the inhibitory potential of their extracts and fractions against acetylcholinesterase and α-glucosidase. LC-ESI-MS, GC, and GC-MS analytical methods were employed for metabolite profiling of the extracts, and their fractions. The inhibitory activities were determined by microplate reader-based colorimetric methods. 44 metabolites were identified in different parts of S. vermiculata. In roots, vanillic acid, rutin, salsoline, salsoline A, palmitic acid, oleic acid, linoleic acid, cumin aldehyde, and carvone; in seeds, vanillic acid, salsoline A, palmitic acid, oleic acid, linoleic acid, carvone, and β-caryophyllene; in leaves, gallic acid, vanillic acid, caffeic acid, rosmaric acid, rutin, quercetin, limonene, and carvone, and in flowers, gallic acid, vanillic acid, cinnamic acid, rosmaric acid, rutin, kaempferol, limonene, linalool, and carvone were reported as major components. According to the inhibitory activities results, the ethyl acetate fractions of leaves and the aqueous-acid fraction of roots displayed the highest inhibitory activity against acetylcholinesterase (IC50: 17.24 µg/mL), and α-glucosidase (IC50: 62.37 µg/mL), respectively. Finally, the leaves and roots of S. vermiculata are rich of phenolic and alkaloid compounds and the findings of this study describe them as a promising acetylcholinesterase and α-glucosidase inhibitors, and therefore, can be utilized for the development of new drugs.


[1] Botschantzev, V.P. 1969. Genus Salsola L.concise history of its development and dispersal. Botan J, 54(7):989-1001.
[2] Kuhn, U. 1993. Chenopodiaceae. In the families and genera of vascular plants 2 (Kubitzki K, Rohwer JG, Bittrich V. eds.), Berlin Heidelberg etc, Springer, 258-281.
[3] Tundis, R., Menichini, F., Conforti, F., Loizzo, M.R., Bonesi, M., Statti, G. and Menichini, F. 2009. A potential role of alkaloid extracts from Salsola species (Chenopodiaceae) in the treatment of Alzheimer's disease. J Enz Inhibit Med Chem, 24(3):818-824.
[4] Hartwell JL. 1969. Plants used against cancer. A survey. Lloydia, 32(1):30-34.
[5] Nikiforov, S.B., Semenov, A.A. and Syrchina, A.I. 2002. Effect of an aqueous extract of the above-ground part of Salsola collina on the cholesterol distribution between lipoprotein fractions in the blood serum of rabbit with experimental cholelithiasis. Pharm Chem J, 36:544-545.
[6] Loizzo, M.R., Tundis, R., Statti, G.A., Passalacqua, N.G., Peruzzi, L. and Menichini, F. 2007. In vitro angiotensin converting enzyme inhibiting activity of Salsola oppositifolia Desf., Salsola soda L. and Salsola tragus L. Nat Prod Res, 21(9):846-851.
[7] Hanif, Z., Ali, H.H., Rasool, G., Tanveer, A. and Chauhan, B.S. 2018. Genus Salsola: its benefits, uses, environmental perspectives and future aspects-a review. J Rangel Sci, 8(3):315-328.
[8] Shehab, N.G. and Abu-Gharbieh, E. 2014. Phenolic profiling and evaluation of contraceptive effect of the ethanolic extract of Salsola imbricata Forssk. in male albino rats. Evidence-Based Compl Alter Med, 2014:695291.
[9] Boulaaba, M., Medini, F., Hajlaoui, H., Mkadmini, K., Falleh, H., Ksouri, R. and Abdelly, C. 2019. Biological activities and phytochemical analysis of phenolic extracts from Salsola kali L. Role of endogenous factors in the selection of the best plant extracts. South African J Bot, 123:193-199.
[10] Rasheed, D.M., El Zalabani, S.M., Koheil, M.A., El-Hefnawy, H.M. and Farag, M.A. 2013. Metabolite profiling driven analysis of Salsola species and their anti-acetylcholinesterase potential. Nat Prod Res, 27(24):2320-2327.
[11] Hegnauer, R. 1964. Chemotaxonomie der Pflanzen. Bd. III, Birkhauser Verlag Basel und Stuttgart.
[12] Orekhoff, A. and Proskurnina, N. 1933.Über die Alkalodie von Salsola Richteri. Berichte der Deutschen Chem Gesellschaft (A and B Series), 66(6):841-843.
[13] Orekhoff, A. and Proskurnina, N. 1934. Über die Alkaloide von Salsola Richteri, II. Mitteil.: Die    Konstitution des Salsolins. Chem. Berichte – Chem Europe, 67:878-884.
[14] Al-Oudat, M. and Qadir, M. 2011. The halophytic flora of Syria. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria.
[15] Al-Tohamy, R., Ali, S.S., Saad-Allah, K., Fareed, M., Ali, A., El-Badry, A. and Rupani, P.F. 2018. Phytochemical analysis and assessment of antioxidant and antimicrobial activities of some medicinal plant species from Egyptian flora. J Appl Biomed, 16(4):289-300.
[16] Hazrati, S., Ebadi, M.T., Mollaei, S. and Khurizadeh, S. 2019. Evaluation of volatile and phenolic compounds, and antioxidant activity of different parts of Ferulago angulata (schlecht.) Boiss. Ind Crop Prod, 140:111589.
[17] Ebadi-Nahari, M., Farnia, P., Nikzat, S. and Mollaei S. 2018. A chemotaxonomic evaluation of some Scabiosa L. species in Iran. Biochem Syst Ecol, 81:33-36.
[18] Pistia-Brueggeman, G. and Hollingsworth, R.I. 2001. A preparation and screening strategy for glycosidase inhibitors. Tetrahedron, 57(42):8773-8778.
[19] Hirai, I., Okuno, M., Katsuma, R., Aria, N., Tachibana, M. and Yamamoto, Y. 2010. Characterisation of anti-Staphylococcus aureus activity of quercetin. Inter J Food Sci Technol, 45:1250–1254.
[20] Lee, K.A., Moon, S.H., Kim, K.T., Mendonca, A.F. and Paik, H.D. 2010. Antimicrobial effects of various flavonoids on Escherichia coli O157:H7 cell growth and lipopolysaccharide production. Food Sci Biotechnol, 19:257-261.
[21] Calderón-Montaño, J.M., Burgos-Morón, E., Pérez-Guerrero, C. and López-Lázaro, M. 2011. A review on the dietary flavonoid kaempferol. Med Chem, 11:298-344.
[22] Nadeem, M., Imran, M., Aslam Gondal, T., Imran, A., Shahbaz, M., Muhammad Amir, R. and Martins, N. 2019. Therapeutic potential of rosmarinic acid: A comprehensive review. Appl Sci, 9(15):3139.
[23] Xiang, Y., Li, Y.B., Zhang, J., Li, P. and Yao, Y.Z. 2007. A new alkaloid from Salsola collina. Yao Xue Xue Bao, 42:618-620.
[24] Gannoun, S., Mahfoudhi, A., Flamini, G., Helal, A.N. and Mighri, Z. 2016. Chemical composition and antimicrobial activities of Tunisian Salsola vermiculata L. J Chem Pharm Res, 8(4):1087-1092.
[25] Pässler, U. and Knölker, H.J. 2011. The pyrrolo [2, 1-a] isoquinoline alkaloids. The alkaloids: Chem Biol, 70:79-151.
[26] Konrath, E.L., Passos, C.D.S., Klein‐Júnior, L.C. and Henriques, A.T. 2013. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer's disease. J Pharm Pharm, 65(12):1701-1725.
[27] Şöhretoğlu, D., Sari, S., Barut, B. and Özel. A. 2018. Discovery of potent α-glucosidase inhibitor flavonols: insights into mechanism of action through inhibition kinetics and docking simulations. Bioorg Chem, 79:257–264.
[28] Moradi-Afrapoli, F., Asghari, B., Saeidnia, S., Ajani, Y., Mirjani, M., Malmir, M. and Yassa, N. 2012. In vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polygonum hyrcanicum. DARU J Pharm Sci, 20(1):37.
[29] Li, Y.Q., Zhou, F.C., Gao, F., Bian, J.S. and Shan, F. 2009. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. J Agri Food Chem, 57(24):11463-11468.
Volume 9, Issue 1
June 2021
Pages 25-34
  • Receive Date: 15 December 2021
  • Revise Date: 14 April 2022
  • Accept Date: 30 April 2022
  • First Publish Date: 30 April 2022