Document Type : Research Paper


1 Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

2 Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.

3 2. Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Khuzestan, Iran


Bacillus thuringiensis Berliner as a biological control agent can play a crucial role in the integrated management of a wide range of plant pests and diseases. B. thuringiensis is expected to elicit plant defensive response through plant recognition of microbe-associated molecular patterns (MAMPs), however, there is little information on the molecular base of induced systemic resistance priming of tomatoes. Using q-RT-PCR technique, the transcription rate of the genes responsive to salicylic acid, SA (Chi9, Chi3, PR1), jasmonic acid, JA (Pin2), and of the signaling regulatory genes of jasmonate/ ethylene, JA/ ET hormones (WRKY33, ERF1, MYC2) were studied at the time of 6, 12, 24, 48, 72, and 96 hours after inoculation of tomato plants with B. thuringiensis strain IBRC-M 11096 as the promoting plant growth factor. The bacterial strain could prime tomato cultivar of Early Urbana through induction of all three hormonal signaling pathways (SA, JA, and ET) involved in the resistance to a broad range of necrotrophic as well as biotrophic pathogens. However, further transcription of WRKY33, ERF1, MYC2, and Pin2 genes in the inoculated plants, indicated that the observed priming effect was mainly based on JA/ ET signaling pathway. These promising results indicate high potential of superior isolates of B. thuringiensis in the field management of the crops.


[1]   Petatan-Sagahon, I., Anducho-Reyes, M.A., Silva-Rojas, H.V., Arana-Cuenca, A., Tellez-Jurado, A., Cárdenas-Álvarez, I.O. and Mercado-Flores, Y. 2011. Isolation of bacteria with antifungal activity against the phytopathogenic fungi Stenocarpella maydis and Stenocarpella macrospora. Int J Mol Sci, 12(9): 5522-5537.
 [2]  Van der Ent, S., Van Wees, S. C. and Pieterse, C. M. 2009. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry, 70: 1581–1588.
[3]   Durrant, W.E. and Dong, X. 2004. Systemic acquired resistance. Annu Rev Phytopathol, 42:185-209.
[4]   Conrath, U., Beckers, G.J., Langenbach,C.J. and Jaskiewicz M.R. 2015. Priming for enhanced defence. Annu Rev Phytopathol, 53: 97–119.
[5]   Van der Ent, S., Van Hulten, M.H.A., Pozo, M.J., Czechowski, T., Udvardi, M.K. 2009. Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation.New Phytol,183:419–31.
 [6]  Pozo, M.J., Van der Ent, S., Van Loon, L.C., Pieterse, C.M.J. 2008. Transcription factor MYC2 is involved inpriming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana.New Phytol,180:511–23.
[7]   Verhagen, B.W.M., Glazebrook, J., Zhu, T., Chang, H.S., Van Loon, L.C., Pieterse, C.M.J. 2004. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact,17:895–908
[8]   Conrath, U. 2011. Molecular aspects of defence priming. Trends Plant Sci, 16 (10):524-531
 [9]  van de Mortel, J. E., de Vos, R. C., Dekkers, E., Pineda, A., Guillod, L., Bouwmeester, K. 2012. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol, 160: 2173–2188.
[10] Van Oosten, V. R., Bodenhausen, N., Reymond, P., Van Pelt, J. A., Van Loon, L. C., Dicke, M. 2008. Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis.Mol. Plant Microbe Interact, 21: 919–930.
[11] Pieterse, C. M. J., Van Wees, S. C. M., Van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., Van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 10(9): 1571–1580.
[12] Niu, D. D., Liu, H. X., Jiang, C. H., Wang, Y. P., Wang, Q. Y., Jin, H. L., et al. (2011). The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways.Mol Plant Microbe Interact,24: 533–542.
[13] Rosas-García, N.M. 2009. Biopesticide production from Bacillus thuringiensis: an environmentally friendly alternative. Recent Pat Biotechnol, 3(1): 28-36.
[14] Kamenek, L., Kamenek, D., Terpilowski, M. and Gouli, V. 2012. Antifungal action of Bacillus thuringiensis delta-endotoxin against pathogenic fungi related to Phytophthora and Fusarium. Int J Agric Technol, 8(1): 191-203.
[15] Radhakrishnan, R., Hashem, A. and Abd_Allah, E.F. 2017. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol, 8: 667
[16] García Robles, I., Ochoa Campuzano, C., Fernández Crespo, E., Camañes, G., Martínez Ramírez, A., González Bosch, C., García Agustín, P., Rausell, C. and Real, M. 2013. Combining hexanoic acid plant priming with Bacillus thuringiensis insecticidal activity against Colorado potato beetle. Int J Mol Sci, 14(6): 12138-12156.
 [17] Akram, W., Mahboob, A. and Javed, A.A. 2013. Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt. Eur J Microbiol Immunol, 3(4): 275-280.
[18] Hyakumachi, M., Nishimura, M., Arakawa, T., Asano, S., Yoshida, S., Tsushima, S. and Takahashi, H. 2013. Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato. Microbes Environ, 28(1): 128-134.
[19] Akköprü, A. and Demir, S. 2005. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol, 153(9): 544-550.
[20] Lacy, G.H. and Lukezic, F.L. 2008. Plant pathology concepts and laboratory exercises. 2nd edn, In Trigiano, R.N., Windham, M.T. and Windham, A.S. (Eds), Laboratory Exercises for Plant pathogenic bacteria pages. pp: 57-63. CRC press , NewYork.
[21] Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. methods, 25(4): 402-408.
[22] Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res, 29(9): e45-e45.
 [23] Kwon, Y.S., Ryu, C.-M., Lee, S., Park, H.B., Han, K.S., Lee, J.H., Lee, K., Chung, W.S., Jeong, M.-J. and Kim, H.K. 2010. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta, 232(6): 1355-1370.
[24] Timmermann, T., Armijo, G., Donoso, R., Seguel, A., Holuigue, L. and González, B. 2017. Paraburkholderia phytofirmans PsJN protects Arabidopsis thaliana against a virulent strain of Pseudomonas syringae through the activation of induced resistance. Mol Plant Microbe Interact, 30(3): 215-230
.[25] Pozo, M.J., Van Der Ent, S., Van Loon, L. and Pieterse, C.M. 2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria‐induced systemic resistance in Arabidopsis thaliana. New Phytol, 180(2): 511-523.
 [26] Howe, G.A. 2004. Jasmonates as signals in the wound response. J Plant Growth Regul, 23(3): 223-237.
[27] Bakshi, M. and Oelmüller, R. 2014. WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav, 9(2): e27700.
 [28] Dong, J., Chen, C. and Chen, Z. 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 51(1): 21-37
[29] Zheng, Z., Qamar, S.A., Chen, Z. and Mengiste, T. 2006. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J, 48(4): 592-605.
 [30] Fan, W. and Dong, X. 2002. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid–mediated gene activation in Arabidopsis. Plant Cell, 14(6): 1377-1389.
 [31] Niu, D. D., Wang, C. J., Guo, Y. H., Jiang, C. H., Zhang, W. Z., Wang, Y. P. and Guo, J. H. 2012. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces resistance in tomato with induction and priming of defence response. Biocontrol Sci Technol, 22(9): 991-1004.
 [32] Ahn, I. P., Lee, S. W. and Suh, S. C. 2007. Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. MPMI, 20(7): 759-768.
[33] Ongena, M., Duby, F., Jourdan, E., Beaudry, T., Jadin, V., Dommes, J. and Thonart, P. 2005. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol, 67(5): 692-698.
 [34] Pieterse, C.M., Van Wees, S.C., Van Pelt, J.A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P.J. and Van Loon, L.C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 10(9): 1571-1580.
 [35] Park, K.S. and Kloepper, J.W. 2000. Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol Control, 18(1): 2-9.
[36] Fatouros, G., Gkizi, D., Fragkogeorgi, G., Paplomatas, E. and Tjamos, S. 2018. Biological control of Pythium, Rhizoctonia and Sclerotinia in lettuce: association of the plant protective activity of the bacterium Paenibacillus alvei K165 with the induction of systemic resistance. Plant pathol, 67(2): 418-425.
 [37] Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261(5122): 754-756
[38] Ene, M., Alexandru, M., NEGUŢ, D.C. and ŞESAN, T.E. 2013. Class II acidic chitinase expression in tomatoes treated with Trichoderma and AM Fungi. Rom Biotechnol Lett, 18(5): 8645.
 [39] Aime, S., Cordier, C., Alabouvette, C. and Olivain, C. 2008. Comparative analysis of PR gene expression in tomato inoculated with virulent Fusarium oxysporum f. sp. lycopersici and the biocontrol strain F. oxysporum Fo47. Physiol. Mol. Plant Pathol., 73(1-3): 9-15.
 [40] Kim, J. S., Lee, J., Lee, C. H., Woo, S.Y., Kang, H., Seo, S. G. and Kim, S.-H. 2015. Activation of pathogenesis-related genes by the rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants. Plant Pathol J, 31(2): 195.
 [41] Rathore, A.S. and Gupta, R.D. 2015. Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res, 2015.
[42] Haran, S., Schickler, H., Oppenheim, A. and Chet, I. 1996. Differential expression of Trichoderma harzianum chitinases during mycoparasitism. Phytopathology, 86(9): 980-985
[43] Bressan, W. and Figueiredo, J.F. 2010. Chitinolytic Bacillus spp. isolates antagonistic to Fusarium moniliforme in maize. J Phytopathol, 92 (2): 343-347.
[44] El Hamshary, O., Salem, H.H. and Soliman, N.A. 2008. Molecular screening of chitinase gene in Bacillus spp. J Appl Sci Res, 4: 1118-1123.
[45] Usharani, T. and Gowda, T. 2011. Cloning of chitinase gene from Bacillus thuringiensis. Indian J Biotechnol, 10:264-269.
[46] Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, U. and Vad1, K. 1993. Plant chitinases. Plant J, 3(1): 31-40.
 [47] Punja, Z.K. and Zhang, Y.Y. 1993. Plant chitinases and their roles in resistance to fungal diseases. J Nematol, 25(4): 526.
[48] Suzuki, K., SuGAwARA, N., Suzuki, M., Uchiyama, T., Katouno, F., Nikaidou, N. and Watanabe, T. 2002. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem, 66(5): 1075-1083.