Association mapping of morpho-physiological traits in barley (Hordeum vulgare L.) under salinity stress

Document Type : Original research paper


1 Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran

2 Seed and Plant Improvement Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran

3 Seed and Plant Improvement Research Department, Yazd Agricultural and Natural Resources Research and Education Center, AREEO, Yazd, Iran

4 Department of Water Engineering, Islamic Azad University, Kerman Branch, Iran


In this study molecular markers associated with morpho-physiological traits were identified using 14 AFLP primer combinations and 32 SSRs primer pairs across a cohort of 148 barley cultivars employing the association mapping approach. Phenotypic analysis was carried out using an alpha-lattice design with five incomplete blocks replicated twice under normal and salinity stress conditions (EC = 12 dS m-1) in two growing seasons. Population genetic structure was divided into two subpopulations (K = 2). In the present association panel, the mean of D´and r2, indicators for linkage disequilibrium (LD) were estimated at 0.25 and 0.02, respectively. The mixed linear model identified 194 significant marker-trait associations for nine studied traits under normal and salinity stress conditions. Several quantitative trait loci (QTLs) were stable for plant height, number of grains per spike, grain weight per spike, and leaf proline content traits under each of the environmental conditions, and termed stable QTLs. In addition, some stable QTLs were common to several traits and thereby enable barley breeder to undertake a concurrent selection of multiple traits to develop high-yielding cultivars. The identified markers could be useful in the implementation of marker-assisted selection in barley to improve the efficiency of selecting genotypes for salinity tolerance.


Main Subjects

Aghnoum, R., Marcel, T.C., Johrde, A., Pecchioni, N., Schweizer, P., and Niks, R.E. (2010). Basal host resistance of barley to powdery mildew: connecting quantitative trait loci and candidate genes. Mol Plant-Microbe Interact 23(1): 91-102.
Arzani, A. (2008). Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev Biol Plant 44: 373-383.
Arzani, A., and Ashraf, M. (2016). Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. CRC Crit Rev Plant Sci 35(3): 146-189.
Barati, A., Moghadam, M., Mohammadi, S., Ghazvini, H., and Sadeghzadeh, B. (2017). Identification of QTLs associated with agronomic and physiological traits under salinity stress in barley. J Agric Sci Tech 19: 185-200.
Breseghello, F., and Sorrells, M.E. (2006). Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172(2): 1165-1177.
Caldwell, K.S., Russell, J., Langridge, P., and Powell, W. (2006). Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172(1): 557-567.
El-Denary, M., Noaman, M., Abdelkhalek, A., and Mariey, S. (2012). Marker traits association of some barley genotypes under soil salinity condition using SSR markers. Egypt J Medical Hum Genet 41(2).
Elakhdar, A., Abd EL-Sattar, M., Amer, K., Rady, A., and Kumamaru, T. (2016a). Population structure and marker–trait association of salt tolerance in barley (Hordeum vulgare L.). C R Biol 339(11-12): 454-461.
Elakhdar, A., El-Sattar, M.A., Amer, K., and Kumamaru, T. (2016b). Genetic diversity and association analysis among Egyptian barley ('Hordeum vulgare'L.) genotypes with different adaptations to saline conditions analyzed by SSR markers. Aust J Crop Sci 10(5).
Eleuch, L., Jilal, A., Grando, S., Ceccarelli, S., von Korff Schmising, M., Tsujimoto, H., Hajer, A., Daaloul, A., and Baum, M. (2008). Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using simple sequence repeat markers. J Integr Plant Biol 50(8): 1004-1014.
Ellis, R.P., Forster, B.P., Robinson, D., Handley, L., Gordon, D.C., Russell, J.R., and Powell, W. (2000). Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot 51(342): 9-17.
Falush, D., Stephens, M., and Pritchard, J.K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4): 1567-1587.
Fan, Y., Zhou, G., Shabala, S., Chen, Z.-H., Cai, S., Li, C., and Zhou, M. (2016). Genome-wide association study reveals a new QTL for salinity tolerance in barley (Hordeum vulgare L.). Front Plant Sci 7: 946.
Flint-Garcia, S.A., Thornsberry, J.M., and Buckler IV, E.S. (2003). Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54(1): 357-374.
Flint‐Garcia, S.A., Thuillet, A.C., Yu, J., Pressoir, G., Romero, S.M., Mitchell, S.E., Doebley, J., Kresovich, S., Goodman, M.M., and Buckler, E.S. (2005). Maize association population: a high‐resolution platform for quantitative trait locus dissection. Plant J 44(6): 1054-1064.
Flowers, T. (2004). Improving crop salt tolerance. J Exp Bot 55(396): 307-319.
Gharaghanipor, N., Arzani, A., Rahimmalek, M., and Ravash, R. (2022). Physiological and transcriptome indicators of salt tolerance in wild and cultivated barley. Front Plant Sci 13: 819282.
Gupta, P.K., Rustgi, S., and Kulwal, P.L. (2005). Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57: 461-485.
Hittalmani, S., Huang, N., Courtois, B., Venuprasad, R., Shashidhar, H., Zhuang, J., Zheng, K., Liu, G., Wang, G., and Sidhu, J. (2003). Identification of QTL for growth-and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet 107: 679-690.
Inostroza, L., del Pozo, A., Matus, I., Castillo, D., Hayes, P., Machado, S., and Corey, A. (2009). Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Mol Breed 23: 365-376.
Jabbari, M., Fakheri, B.A., Aghnoum, R., Darvishzadeh, R., Mahdi Nezhad, N., Ataei, R., Koochakpour, Z., and Razi, M. (2021). Association analysis of physiological traits in spring barley (Hordeum vulgare L.) under water‐deficit conditions. Food Sci Nutr 9(3): 1761-1779.
Jun, T.-H., Van, K., Kim, M.Y., Lee, S.-H., and Walker, D.R. (2008). Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162: 179-191.
Kilian, B., Özkan, H., Kohl, J., von Haeseler, A., Barale, F., Deusch, O., Brandolini, A., Yucel, C., Martin, W., and Salamini, F. (2006). Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Genet Genom 276: 230-241.
Kraakman, A., Martinez, F., Mussiraliev, B., Van Eeuwijk, F., and Niks, R. (2006). Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed 17: 41-58.
Liu, L., Sun, G., Ren, X., Li, C., and Sun, D. (2015). Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genet 16(1): 1-10.
Long, N.V., Dolstra, O., Malosetti, M., Kilian, B., Graner, A., Visser, R.G., and van der Linden, C.G. (2013). Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 126: 2335-2351.
Mohamed, N., Said, A., Mustafa, A., and Léon, J. (2015). Association mapping for salinity tolerance related traits in a structured barley population. Egypt J Agron 37(1): 11-33.
Moose, S.P., and Mumm, R.H. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147(3): 969-977.
Omrani, S., Arzani, A., Esmaeilzadeh Moghaddam, M., and Mahlooji, M. (2022). Genetic analysis of salinity tolerance in wheat (Triticum aestivum L.). PloS One 17(3): e0265520.
Pasam, R.K., Sharma, R., Malosetti, M., van Eeuwijk, F.A., Haseneyer, G., Kilian, B., and Graner, A. (2012). Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12(1): 1-22.
Pritchard, J.K., and Donnelly, P. (2001). Case–control studies of association in structured or admixed populations. Theor Popul Biol 60(3): 227-237.
Pritchard, J.K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155(2): 945-959.
Ramsay, L., Comadran, J., Druka, A., Marshall, D.F., Thomas, W.T., Macaulay, M., MacKenzie, K., Simpson, C., Fuller, J., and Bonar, N. (2011). INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43(2): 169-172.
Rostoks, N., Ramsay, L., MacKenzie, K., Cardle, L., Bhat, P.R., Roose, M.L., Svensson, J.T., Stein, N., Varshney, R.K., and Marshall, D.F. (2006). Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103(49): 18656-18661.
Saade, S., Brien, C., Pailles, Y., Berger, B., Shahid, M., Russell, J., Waugh, R., Negrão, S., and Tester, M. (2020). Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages. PLoS One 15(7): e0236037.
Sallam, A., Alqudah, A.M., Dawood, M.F., Baenziger, P.S., and Börner, A. (2019). Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J Mol Sci 20(13): 3137.
Sayed, M.A., Nassar, S.M., Moustafa, E.S., Said, M.T., Börner, A., and Hamada, A. (2021). Genetic mapping reveals novel exotic and elite QTL alleles for salinity tolerance in barley. Agronomy 11(9): 1774.
Sbei, H., Sato, K., Shehzad, T., Harrabi, M., and Okuno, K. (2014). Detection of QTLs for salt tolerance in Asian barley (Hordeum vulgare L.) by association analysis with SNP markers. Breed Sci 64(4): 378-388.
Spataro, G., Tiranti, B., Arcaleni, P., Bellucci, E., Attene, G., Papa, R., Spagnoletti Zeuli, P., and Negri, V. (2011). Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theor Appl Genet 122: 1281-1291.
Sun, D., Ren, W., Sun, G., and Peng, J. (2011). Molecular diversity and association mapping of quantitative traits in Tibetan wild and worldwide originated barley (Hordeum vulgare L.) germplasm. Euphytica 178: 31-43.
Tuberosa, R., Salvi, S., Sanguineti, M.C., Landi, P., Maccaferri, M., and Conti, S. (2002). Mapping QTLs regulating morpho‐physiological traits and yield: Case studies, shortcomings and perspectives in drought‐stressed maize. Ann Bot 89(7): 941-963.
Wang, J., Sun, G., Ren, X., Li, C., Liu, L., Wang, Q., Du, B., and Sun, D. (2016). QTL underlying some agronomic traits in barley detected by SNP markers. BMC Genet 17(1): 1-13.
Xu, R., Wang, J., Li, C., Johnson, P., Lu, C., and Zhou, M. (2012). A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L.). PLoS One 7(8): e43079.
Xue, D., Huang, Y., Zhang, X., Wei, K., Westcott, S., Li, C., Chen, M., Zhang, G., and Lance, R. (2009). Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 169: 187-196.
Yap, T., and Harvey, B. (1972). Relations between grain yield and photosynthetic parts above the flag leaf node in barley. Can J Plant Sci 52(2): 241-246.
Yu, J., and Buckler, E.S. (2006). Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17(2): 155-160.
Yu, J., Pressoir, G., Briggs, W.H., Vroh Bi, I., Yamasaki, M., Doebley, J.F., McMullen, M.D., Gaut, B.S., Nielsen, D.M., and Holland, J.B. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2): 203-208.
Zhang, Q., Wu, C., Ren, F., Li, Y., and Zhang, C. (2012). Association analysis of important agronomical traits of maize inbred lines with SSRs. Aust J Crop Sci 6(6): 1131-1138.
Zhu, C., Gore, M., Buckler, E.S., and Yu, J. (2008). Status and prospects of association mapping in plants. Plant Genome 1(1).
Volume 11, Issue 1
January 2023
Pages 74-88
  • Receive Date: 24 May 2023
  • Revise Date: 01 February 2024
  • Accept Date: 02 February 2024
  • First Publish Date: 02 February 2024