Identification and expression analysis of HSP100 gene family in Aeluropus littoralis

Document Type : Original research paper


1 Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, PO Box 578, Sari

2 Bu Ali Sina University


Heat shock proteins (HSPs), molecular chaperones with many activities, are essential to plant growth, development, and stress responses. To make crops more salt- and drought-resistant, plant breeders have considered halophytic plant. Aeluropus littoralis, a halophyte monocot grass, is one potential model species to discover new stress-response genes. Here, exon/intron structure, conserved motifs/ domains, and expression patterns of HSP100 gene family were identified in the genome of A. littoralis. This study found six unique AlHSP100 non-repetitive genes, revealing remarkable structural and physicochemical variations between the subfamilies. Phylogenetic and motif analyses revealed that proteins from the same subfamily (AlHSP100.1-4) and proteins from other subfamilies (AlHSP100.5-6) have similar types, ordering, and quantities of motifs. Finally, the expression of AlHSP100.3 gene was analyzed using RT-qPCR under dehydration, salt, cold, and phytohormone abscisic acid stress treatments, revealed that their expression patterns vary in response to abiotic stresses. The presence of stress-dependent regulation of the HSP100.3 gene, as evidenced by the early response to osmotic stress and the late response to cold stress, is likely associated with the cis-regulatory elements located upstream of this gene. This study provides more valuable information to deepen our understanding of the abiotic stress responses by HSP100 genes in A. littoralis.


Main Subjects

Agarwal, M., Katiyar-Agarwal, S., Sahi, C., Gallie, D.R., and Grover, A. (2001). Arabidopsis thaliana Hsp100 proteins: kith and kin. Cell Stress Chaperon 6(3): 219-224. doi: 10.1379/1466-1268(2001)006<0219:athpka>;2.
Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., and Noble, W.S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue): W202-208. doi: 10.1093/nar/gkp335.
Banilas, G., Korkas, E., Englezos, V., Nisiotou, A., and Hatzopoulos, P. (2012). Genome‐wide analysis of the heat shock protein 90 gene family in grapevine (Vitis vinifera L.). Aust J Grape Wine Res 18(1): 29-38.
Bita, C., and Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4: 273.
Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., and Wittwer, C.T. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4): 611-622. doi: 10.1373/clinchem.2008.112797.
Campbell, J.L., Klueva, N.Y., Zheng, H.G., Nieto-Sotelo, J., Ho, T.D., and Nguyen, H.T. (2001). Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA(1). Biochim Biophys Acta 1517(2): 270-277. doi: 10.1016/s0167-4781(00)00292-x.
Carr, T., Wang, Y., Huang, Z., Yeakley, J.M., Fan, J.-B., and Whitham, S.A. (2006). Tobamovirus infection is independent of HSP101 mRNA induction and protein expression. Virus Res 121(1): 33-41.
Chen, J., Gao, T., Wan, S., Zhang, Y., Yang, J., Yu, Y., and Wang, W. (2018). Genome-Wide Identification, Classification and Expression Analysis of the HSP Gene Superfamily in Tea Plant (Camellia sinensis). Int J Mol Sci 19(9): 2633. doi: 10.3390/ijms19092633.
Esmaeili Tazangi, S., Niazi, A., Ghaffari, M.R., Alemzadeh, A., and Tahmasebi, A. (2022). Identification of drought stress-responsive long non-coding RNAs (lncRNAs) in root tip region of rice (Oryza sativa). J Plant Mol Breed 10(2): 31-45. doi: 10.22058/jpmb.2023.2007831.1280.
Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G.A., Tate, J., and Bateman, A. (2016). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1): D279-285. doi: 10.1093/nar/gkv1344.
Gong, C., Pang, Q., Li, Z., Li, Z., Chen, R., Sun, G., and Sun, B. (2021). Genome-wide identification and characterization of Hsf and Hsp gene families and gene expression analysis under heat stress in eggplant (Solanum melongema L.). Horticulturae 7(6): 149.
Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., and Rokhsar, D.S. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(Database issue): D1178-1186. doi: 10.1093/nar/gkr944.
Guo, M., Liu, J.H., Lu, J.P., Zhai, Y.F., Wang, H., Gong, Z.H., Wang, S.B., and Lu, M.H. (2015). Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Front Plant Sci 6: 806. doi: 10.3389/fpls.2015.00806.
Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95-98.
Hashemi-Petroudi, S.H., Arab, M., Dolatabadi, B., Kuo, Y.-T., Baez, M.A., Himmelbach, A., Nematzadeh, G., Maibody, S.A.M.M., Schmutzer, T., and Mälzer, M. (2022). Initial description of the Genome of Aeluropus littoralis, a halophile grass. Front Plant Sci 13: 906462.
Hashemi, S.H., Nematzadeh, G., Ahmadian, G., Yamchi, A., and Kuhlmann, M. (2016). Identification and validation of Aeluropus littoralis reference genes for Quantitative Real-Time PCR Normalization. J Biol Res (Thessalon) 23(1): 18. doi: 10.1186/s40709-016-0053-8.
Hashemipetroudi, S., Ghorbani, H., Sohrevardi, F., and Arab, M. (2022). Identification and comprehensive analyses of the CBL gene families in sweet orange (Citrus sinensis L.). J Plant Mol Breed 10(2): 76-91. doi: 10.22058/jpmb.2024.555361.1257.
Heidari, P., Sabari, B., and Seifi, A. (2023). Magnesium transporter family: sequence, evolution and expression analysis in soybean (Glycine max L.). J Plant Mol Breed 11(1): 62-73. doi: 10.22058/jpmb.2024.2020070.1287.
Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., and Nakai, K. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Res 35(Web Server issue): W585-587. doi: 10.1093/nar/gkm259.
Hu, B., Jin, J., Guo, A.Y., Zhang, H., Luo, J., and Gao, G. (2015). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8): 1296-1297. doi: 10.1093/bioinformatics/btu817.
Hu, C., Yang, J., Qi, Z., Wu, H., Wang, B., Zou, F., Mei, H., Liu, J., Wang, W., and Liu, Q. (2022). Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. Med Comm 3(3): e161.
Hu, W., Hu, G., and Han, B. (2009a). Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176(4): 583-590.
Hu, W., Hu, G., and Han, B. (2009b). Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176(4): 583-590. doi: 10.1016/j.plantsci.2009.01.016.
Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A.F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.Y., Lopez, R., and Hunter, S. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9): 1236-1240. doi: 10.1093/bioinformatics/btu031.
Kedzierska-Mieszkowska, S., and Arent, Z. (2020). AAA+ Molecular Chaperone ClpB in Leptospira interrogans: Its Role and Significance in Leptospiral Virulence and Pathogenesis of Leptospirosis. Int J Mol Sci 21(18): 6645. doi: 10.3390/ijms21186645.
Lee, U., Rioflorido, I., Hong, S.W., Larkindale, J., Waters, E.R., and Vierling, E. (2007). The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J 49(1): 115-127. doi: 10.1111/j.1365-313X.2006.02940.x.
Letunic, I., Doerks, T., and Bork, P. (2015). SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43(Database issue): D257-260. doi: 10.1093/nar/gku949.
Lin, B.L., Wang, J.S., Liu, H.C., Chen, R.W., Meyer, Y., Barakat, A., and Delseny, M. (2001). Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperon 6(3): 201-208. doi: 10.1379/1466-1268(2001)006<0201:gaoths>;2.
Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4): 402-408.
Metsalu, T., and Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res 43(W1): W566-570. doi: 10.1093/nar/gkv468.
Mishra, R.C., and Grover, A. (2016). ClpB/Hsp100 proteins and heat stress tolerance in plants. Crit Rev Biotechnol 36(5): 862-874. doi: 10.3109/07388551.2015.1051942.
Muthusamy, S.K., Dalal, M., Chinnusamy, V., and Bansal, K.C. (2017). Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol 211: 100-113. doi: 10.1016/j.jplph.2017.01.004.
Ouyang, Y., Chen, J., Xie, W., Wang, L., and Zhang, Q. (2009). Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Mol Biol 70(3): 341-357. doi: 10.1007/s11103-009-9477-y.
Panzade, K.P., Kale, S.S., Chavan, N.R., and Hatzade, B. (2021). Genome-wide analysis of Hsp70 and Hsp100 gene families in Ziziphus jujuba. Cell Stress Chaperon 26(2): 341-353.
Park, C.J., and Seo, Y.S. (2015). Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. Plant Pathol J 31(4): 323-333. doi: 10.5423/PPJ.RW.08.2015.0150.
Razzaq, M.K., Rani, R., Xing, G., Xu, Y., Raza, G., Aleem, M., Iqbal, S., Arif, M., Mukhtar, Z., and Nguyen, H.T. (2023). Genome-Wide Identification and Analysis of the Hsp40/J-Protein Family Reveals Its Role in Soybean (Glycine max) Growth and Development. Genes 14(6): 1254.
Sarkar, N.K., Kim, Y.K., and Grover, A. (2009). Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10(1): 393. doi: 10.1186/1471-2164-10-393.
Scharf, K.D., Siddique, M., and Vierling, E. (2001). The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperon 6(3): 225-237. doi: 10.1379/1466-1268(2001)006<0225:tefoat>;2.
Singh, A., Mittal, D., Lavania, D., Agarwal, M., Mishra, R.C., and Grover, A. (2012). OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.). Cell Stress Chaperon 17(2): 243-254. doi: 10.1007/s12192-011-0303-5.
Singh, A., Singh, U., Mittal, D., and Grover, A. (2010). Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes. BMC Genomics 11(1): 95. doi: 10.1186/1471-2164-11-95.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30(12): 2725-2729. doi: 10.1093/molbev/mst197.
Waters, E.R. (2013). The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64(2): 391-403. doi: 10.1093/jxb/ers355.
Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., and Toriyama, K. (2009). Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28(1): 21-30. doi: 10.1007/s00299-008-0614-x.
Xu, G., Guo, C., Shan, H., and Kong, H. (2012). Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA 109(4): 1187-1192. doi: 10.1073/pnas.1109047109.
Volume 11, Issue 2
June 2023
Pages 66-77
  • Receive Date: 22 February 2024
  • Revise Date: 08 April 2024
  • Accept Date: 13 April 2024
  • First Publish Date: 13 April 2024